• YOLOv6-Openvino和ONNXRuntime推理【CPU】


    1 环境:

    CPU:i5-12500
    Python:3.8.18

    2 安装Openvino和ONNXRuntime

    2.1 Openvino简介

    Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

    Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

    Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
    Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

    2.2 ONNXRuntime简介

    ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

    虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
    总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

    2.3 安装

    pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
    pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple
    
    • 1
    • 2

    3 YOLOv6介绍

    YOLOv6详解
    文章地址:https://link.csdn.net/?target=https%3A%2F%2Farxiv.org%2Fpdf%2F2209.02976.pdf
    Github:https://github.com/meituan/YOLOv6/tree/main

    4 基于Openvino和ONNXRuntime推理

    下面代码整个处理过程主要包括:预处理—>推理—>后处理—>画图。
    假设图像resize为640×640,
    前处理输出结果维度:(1, 3, 640, 640);
    推理输出结果维度:(1, 8400, 85),其中85表示4个box坐标信息+置信度分数+80个类别概率,8400表示80×80+40×40+20×20,不同于v8与v9采用类别里面最大的概率作为置信度score;
    后处理输出结果维度:(5, 6),其中第一个5表示图bus.jpg检出5个目标,第二个维度6表示(x1, y1, x2, y2, conf, cls)。
    注:与YOLOv5输出维度一致,可通用!!!

    4.1 全部代码

    import argparse
    import time 
    import cv2
    import numpy as np
    from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
    import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPU
    
    
    # COCO默认的80类
    CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
                'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
                  'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
                    'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
                      'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
                        'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
                          'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
                            'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
    
    
    class OpenvinoInference(object):
        def __init__(self, onnx_path):
            self.onnx_path = onnx_path
            ie = Core()
            self.model_onnx = ie.read_model(model=self.onnx_path)
            self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")
            self.output_layer_onnx = self.compiled_model_onnx.output(0)
    
        def predirts(self, datas):
            predict_data = self.compiled_model_onnx([datas])[self.output_layer_onnx]
            return predict_data
    
    class YOLOv6:
        """YOLOv6 object detection model class for handling inference and visualization."""
    
        def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):
            """
            Initialization.
    
            Args:
                onnx_model (str): Path to the ONNX model.
            """
            self.infer_tool = infer_tool
            if self.infer_tool == 'openvino':
                # 构建openvino推理引擎
                self.openvino = OpenvinoInference(onnx_model)
                self.ndtype = np.single
            else:
                # 构建onnxruntime推理引擎
                self.ort_session = ort.InferenceSession(onnx_model,
                                                    providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
                                                    if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])
    
                # Numpy dtype: support both FP32 and FP16 onnx model
                self.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.single
           
            self.classes = CLASSES  # 加载模型类别
            self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小
            self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))  # 为每个类别生成调色板
    
        def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):
            """
            The whole pipeline: pre-process -> inference -> post-process.
    
            Args:
                im0 (Numpy.ndarray): original input image.
                conf_threshold (float): confidence threshold for filtering predictions.
                iou_threshold (float): iou threshold for NMS.
    
            Returns:
                boxes (List): list of bounding boxes.
            """
            # 前处理Pre-process
            t1 = time.time()
            im, ratio, (pad_w, pad_h) = self.preprocess(im0)
            print('预处理时间:{:.3f}s'.format(time.time() - t1))
            
            # 推理 inference
            t2 = time.time()
            if self.infer_tool == 'openvino':
                preds = self.openvino.predirts(im)
            else:
                preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]
            print('推理时间:{:.2f}s'.format(time.time() - t2))
    
            # 后处理Post-process
            t3 = time.time()
            boxes = self.postprocess(preds,
                                    im0=im0,
                                    ratio=ratio,
                                    pad_w=pad_w,
                                    pad_h=pad_h,
                                    conf_threshold=conf_threshold,
                                    iou_threshold=iou_threshold,
                                    )
            print('后处理时间:{:.3f}s'.format(time.time() - t3))
    
            return boxes
            
        # 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHW
        def preprocess(self, img):
            """
            Pre-processes the input image.
    
            Args:
                img (Numpy.ndarray): image about to be processed.
    
            Returns:
                img_process (Numpy.ndarray): image preprocessed for inference.
                ratio (tuple): width, height ratios in letterbox.
                pad_w (float): width padding in letterbox.
                pad_h (float): height padding in letterbox.
            """
            # Resize and pad input image using letterbox() (Borrowed from Ultralytics)
            shape = img.shape[:2]  # original image shape
            new_shape = (self.model_height, self.model_width)
            r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
            ratio = r, r
            new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
            pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh padding
            if shape[::-1] != new_unpad:  # resize
                img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
            top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
            left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
            img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充
    
            # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
            img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0
            img_process = img[None] if len(img.shape) == 3 else img
            return img_process, ratio, (pad_w, pad_h)
        
        # 后处理,包括:阈值过滤与NMS
        def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):
            """
            Post-process the prediction.
    
            Args:
                preds (Numpy.ndarray): predictions come from ort.session.run().
                im0 (Numpy.ndarray): [h, w, c] original input image.
                ratio (tuple): width, height ratios in letterbox.
                pad_w (float): width padding in letterbox.
                pad_h (float): height padding in letterbox.
                conf_threshold (float): conf threshold.
                iou_threshold (float): iou threshold.
    
            Returns:
                boxes (List): list of bounding boxes.
            """
            # (Batch_size, Num_anchors, xywh_score_conf_cls), v5和v6_1.0的[..., 4]是置信度分数,v8v9采用类别里面最大的概率作为置信度score
            x = preds  # outputs: predictions (1, 8400, 85)
            
            # Predictions filtering by conf-threshold
            x = x[x[..., 4] > conf_threshold]
    
            # Create a new matrix which merge these(box, score, cls) into one
            # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
            x = np.c_[x[..., :4], x[..., 4], np.argmax(x[..., 5:], axis=-1)]
    
            # NMS filtering
            # 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)
            x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
           
            # 重新缩放边界框,为画图做准备
            if len(x) > 0:
                # Bounding boxes format change: cxcywh -> xyxy
                x[..., [0, 1]] -= x[..., [2, 3]] / 2
                x[..., [2, 3]] += x[..., [0, 1]]
    
                # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
                x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
                x[..., :4] /= min(ratio)
    
                # Bounding boxes boundary clamp
                x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
                x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])
    
                return x[..., :6]  # boxes
            else:
                return []
    
        # 绘框
        def draw_and_visualize(self, im, bboxes, vis=False, save=True):
            """
            Draw and visualize results.
    
            Args:
                im (np.ndarray): original image, shape [h, w, c].
                bboxes (numpy.ndarray): [n, 6], n is number of bboxes.
                vis (bool): imshow using OpenCV.
                save (bool): save image annotated.
    
            Returns:
                None
            """
            # Draw rectangles 
            for (*box, conf, cls_) in bboxes:
                # draw bbox rectangle
                cv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
                              self.color_palette[int(cls_)], 1, cv2.LINE_AA)
                cv2.putText(im, f'{self.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette[int(cls_)], 2, cv2.LINE_AA)
        
            # Show image
            if vis:
                cv2.imshow('demo', im)
                cv2.waitKey(0)
                cv2.destroyAllWindows()
    
            # Save image
            if save:
                cv2.imwrite('demo.jpg', im)
    
    
    if __name__ == '__main__':
        # Create an argument parser to handle command-line arguments
        parser = argparse.ArgumentParser()
        parser.add_argument('--model', type=str, default='yolov6s.onnx', help='Path to ONNX model')
        parser.add_argument('--source', type=str, default=str('bus.jpg'), help='Path to input image')
        parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')
        parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')
        parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')
        parser.add_argument('--infer_tool', type=str, default='openvino', choices=("openvino", "onnxruntime"), help='选择推理引擎')
        args = parser.parse_args()
    
        # Build model
        model = YOLOv6(args.model, args.imgsz, args.infer_tool)
    
        # Read image by OpenCV
        img = cv2.imread(args.source)
    
        # Inference
        boxes = model(img, conf_threshold=args.conf, iou_threshold=args.iou)
    
        # Visualize
        if len(boxes) > 0:
            model.draw_and_visualize(img, boxes, vis=False, save=True)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235

    4.2 结果

    在这里插入图片描述

    具体时间消耗:

    预处理时间:0.005s(包含Pad)
    推理时间:0.08~0.09s(Openvino)
    推理时间:0.11~0.12s(ONNXRuntime)
    后处理时间:0.001s
    注:640×640下,YOLOv6s.onnx版本为1.0,2.0以上推理结果没有直接输出置信度分数,需参考v8v9处理方式对应修改。

  • 相关阅读:
    网络安全CTF竞赛模式、题目类别、所用工具小结
    设立“丰收杯”建设吨粮田 国稻种芯-株洲:破解种粮世界性难题
    浅谈面试经验
    你猜,怎么用一句话证明你是项目经理?
    黑客新工具,可窃取Gmail、雅虎、Outlook等电子邮件
    记一个src中危-图像大小与请求参数可修改
    分享好用无广告的手机浏览器,亲测值得下载
    【云原生之Docker实战】使用docker部署ubuntu系统测试环境
    Java 如何判断Map集合中是否包含元素呢?
    Wireshark分析tcp交互过程
  • 原文地址:https://blog.csdn.net/weixin_45679938/article/details/136322280