曾梦想执剑走天涯,我是程序猿【AK】
了解决策树和随机森林
决策树和随机森林都是机器学习中常用的算法,它们在处理分类和回归问题时表现出色。下面分别详解决策树和随机森林的相关概念和工作原理。
决策树是一种基于树形结构的机器学习模型,用于解决分类和回归问题。它通过递归地将数据集划分成更小的子集来工作,每个子集对应决策树中的一个节点。决策树的每个内部节点表示一个特征属性上的判断条件,每个分支代表一个可能的属性值,每个叶节点代表一个类别(对于分类问题)或一个具体数值(对于回归问题)。
构建决策树的关键步骤包括特征选择、决策树生成和剪枝。
随机森林是一种基于决策树的集成学习算法,它通过构建多个决策树并结合它们的输出来提高模型的泛化能力。随机森林的基本思想是利用多个弱学习器(即决策树)来构建一个强学习器。
随机森林的构建过程如下:
随机森林的优点包括:
总的来说,决策树是一种基于树形结构的分类和回归模型,而随机森林则是通过集成多个决策树来提高模型性能的集成学习算法。两者在机器学习中都有广泛的应用。
推荐链接:
https://www.nvidia.cn/glossary/data-science/random-forest/
https://rstudio-pubs-static.s3.amazonaws.com/304821_b150e48de7bb4252aa1ffcfd51f5ba61.html
https://guomin-h-a.github.io/2020/02/21/decision-tree-and-random-forest/
https://geek-docs.com/machine-learning/machine-learning-tutorial/random-forests.html
---- 永不磨灭的番号:我是AK