🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/
小提琴图(Violin Plot) 是一种用于展示和比较数据分布的可视化工具。它结合了箱形图(Box Plot)和密度图(Kernel Density Plot)的特点:中间有箱形图表示四分位数和中位数,外围是密度估计曲线,显示数据分布的密度。这种设计旨在提供关于数据分布形状、峰度和离散性的直观信息。
小提琴图(Violin Plot)是一种常用于数据可视化的图表类型,它结合了箱形图和核密度估计图的特点,能够展示数据分布的形状、集中趋势和离散程度。下面我将详细介绍小提琴图的基本概念、可视化原理、应用场景以及其优缺点。
基本概念:小提琴图通常用于展示数值型数据的分布情况,它由两部分组成:中间的厚实区域表示数据的主体部分,类似于核密度图;两侧延伸出来的细长线条则代表数据的范围和密度,类似于箱形图的茎叶图。整个图形看起来像一支小提琴,因此得名 “小提琴图”。
可视化原理:小提琴图通过展示数据分布的形状、集中趋势和离散程度,有助于比较不同类别之间的数据分布情况。它利用核密度估计来描述数据分布的形状,并且可以同时显示出不同类别之间的差异。
应用场景:
比较群体分布:小提琴图适合比较不同群体或类别下数值型变量的分布情况,能够直观展现各群体之间的差异。
与其他变量关系:可以结合其他变量进行多变量分析,例如在分类变量下对数值型变量进行分布比较。
异常值检测:通过小提琴图可以快速发现数据中是否存在异常值或者长尾现象。
优缺点
优点:
缺点:
信息密度相对较低:相比于箱形图,小提琴图在同样大小空间内能表示的信息相对较少。
易受样本大小影响:当样本过小时,小提琴图可能无法准确呈现真实数据分布。
总结:小提琴图作为一种常见的数据可视化手段,在比较多组数值型变量的分布时具有独特优势。然而,在使用时需要注意样本大小对结果呈现的影响,并结合具体场景选择合适的可视化手段。
为什么从没有负值的数据中绘制的小提琴图会出现负值部分?
现象描述:当从没有负值的数据中绘制小提琴图时,有时会出现看似负值的部分。这可能让人感到困惑,因为原始数据中并不存在负值。
解释背后的原因:
这种现象通常是由于小提琴图的核密度估计部分所引起的。核密度估计是一种非参数统计方法,用于估计随机变量的概率密度函数。在生成小提琴图时,核密度估计会对数据进行平滑处理,并且在数据范围之外也会有一定程度上的延伸。
因此,即使原始数据中没有负值,核密度估计图在绘制小提琴图时可能会在零点之下产生一些看似负值的部分。这并不意味着实际存在负值,而只是表示在这个区域内的数据密度较低。
出现这种情况主要是由于小提琴图外围的密度估计过程引起的。下面详细解释:
核密度估计(KDE)原理:小提琴图使用核密度估计来平滑数据点,生成外围形状。KDE 是一种非参数方式来估计随机变量的概率密度函数。简而言之,它通过对单个数据点周围放置一个 “核”,然后将所有数据点的核叠加起来生成整体的密度估计。
边界效应:当数据集中所有值都为正且接近零时,KDE 过程可能会在零以下产生非零密度估计,因为某些核会延伸到负值区域。这不意味着数据实际上有负值,而只是密度估计算法试图捕捉到接近零区域的数据分布情况。
带宽选择:KDE 中一个关键参数是带宽(bandwidth),它决定了核的宽度。带宽选择过大或过小都可能导致不准确的密度估计。如果带宽太大,那么生成的密度曲线将更平滑但可能延伸到实际数据范围之外;如果带宽太小,则可能导致过拟合和曲线噪声。
解决方案:
总结:即使原始数据中没有负值,小提琴图也可能显示出负值部分主要是由于核密度估计引入边界效应所致。理解这一点有助于正确解读小提琴图,并根据需要调整可视化策略以准确传达数据信息。