• 算法日记-02完全背包和多重背包问题总结


    完全背包问题总结

    完全背包问题-有N件物品和一个最多能背重量为W的背包

    有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

    完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

    在下面的讲解中,我依然举这个例子:

    背包最大重量为4。

    物品为:

    重量价值
    物品0115
    物品1320
    物品2430

    每件商品都有无限个!

    问背包能背的物品最大价值是多少?

    解题思路

    首先再回顾一下01背包的核心代码

    01背包二维递推公式

    //递推公式
    dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);
    //其中dp[i][j]表示当前可装入0-i物品 背包容量为j的背包装入的最大价值
    
    • 1
    • 2
    • 3

    01背包一维递推公式

    //递推公式
    dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    //我们使用滚动数组进行动态压缩后可得以上递推公式
    
    • 1
    • 2
    • 3

    我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次

    所以其实完全背包问题的一二维递推表达式和01背包问题相同,而完全背包的物品是可以添加多次的

    所以要从小到大去遍历,即:

    // 先遍历物品,再遍历背包
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
            dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);
            //dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    解题模板
    //先遍历物品,再遍历背包
    private static void testCompletePack(){
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagWeight = 4;
        int[] dp = new int[bagWeight + 1];
        for (int i = 0; i < weight.length; i++){ // 遍历物品
            for (int j = weight[i]; j <= bagWeight; j++){ // 遍历背包容量
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }
        for (int maxValue : dp){
            System.out.println(maxValue + "   ");
        }
    }
    
    //先遍历背包,再遍历物品
    private static void testCompletePackAnotherWay(){
        int[] weight = {1, 3, 4};
        int[] value = {15, 20, 30};
        int bagWeight = 4;
        int[] dp = new int[bagWeight + 1];
        for (int i = 1; i <= bagWeight; i++){ // 遍历背包容量
            for (int j = 0; j < weight.length; j++){ // 遍历物品
                if (i - weight[j] >= 0){
                    dp[i] = Math.max(dp[i], dp[i - weight[j]] + value[j]);
                }
            }
        }
        for (int maxValue : dp){
            System.out.println(maxValue + "   ");
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    经典例题
    力扣322.零钱兑换

    给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

    计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

    你可以认为每种硬币的数量是无限的。

    示例 1:

    输入:coins = [1, 2, 5], amount = 11
    输出:3 
    解释:11 = 5 + 5 + 1
    
    • 1
    • 2
    • 3

    示例 2:

    输入:coins = [2], amount = 3
    输出:-1
    
    • 1
    • 2

    示例 3:

    输入:coins = [1], amount = 0
    输出:0
    
    • 1
    • 2

    代码实现:

    class Solution {
        public int coinChange(int[] coins, int amount) {
            //定义dp数组  dp[i]表示凑成金额为i的硬币所需的最少硬币个数
            int[] dp = new int[amount+1];
            int max = Integer.MAX_VALUE-1;
            //初始化dp数组
            for (int j = 0; j < dp.length; j++) {
                dp[j] = max;
            }
            dp[0] = 0;
            //因为是要找出最少的次数所以 遍历顺序不影响
            for(int i=0;i<coins.length;i++){
                for(int j=0;j<amount+1;j++){
                    //当背包容量大于等于硬币i的价值时 才能放入
                    if(j>=coins[i]){
          				//dp[j-coins[i]]表示当放入硬币i时剩余背包装满所需的最少硬币个数
                        dp[j] = Math.min(dp[j],dp[j-coins[i]]+1);
                    }
                }
            }
            if(dp[amount]==max||dp[amount]<0){
                return -1;
            }
            return dp[amount];
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    力扣518.零钱兑换II

    给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

    请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0

    假设每一种面额的硬币有无限个。

    题目数据保证结果符合 32 位带符号整数。

    示例 1:

    输入:amount = 5, coins = [1, 2, 5]
    输出:4
    解释:有四种方式可以凑成总金额:
    5=5
    5=2+2+1
    5=2+1+1+1
    5=1+1+1+1+1
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    示例 2:

    输入:amount = 3, coins = [2]
    输出:0
    解释:只用面额 2 的硬币不能凑成总金额 3 。
    
    • 1
    • 2
    • 3

    示例 3:

    输入:amount = 10, coins = [10] 
    输出:1
    
    • 1
    • 2

    实现代码:

    class Solution {
        public int change(int amount, int[] coins) {
            int count = 0;
            //定义dp数组
            int[] dp = new int[amount+1];
            //这里初始化为1是方便后续计算 因为能装满背包的话 恰好得到dp[0] 这时我们需要让对应的dp[j]=1
            dp[0] = 1;
            //先遍历物品
            for(int i=0;i<coins.length;i++){
                //在遍历容量 j=coins[i]是因为 当背包容量大于等于硬币价值时才能放入
                for(int j=coins[i];j<amount+1;j++){
                    //先固定拿物品i 然后放入背包中 就能到有多少种放满背包的方式了
                    dp[j] += dp[j-coins[i]];
                }
            }
            return dp[amount];
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    力扣377.组合总和 Ⅳ

    给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

    题目数据保证答案符合 32 位整数范围。

    示例 1:

    输入:nums = [1,2,3], target = 4
    输出:7
    解释:
    所有可能的组合为:
    (1, 1, 1, 1)
    (1, 1, 2)
    (1, 2, 1)
    (1, 3)
    (2, 1, 1)
    (2, 2)
    (3, 1)
    请注意,顺序不同的序列被视作不同的组合。
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    示例 2:

    输入:nums = [9], target = 3
    输出:0
    
    • 1
    • 2

    实现代码:

    class Solution {
        public int combinationSum4(int[] nums, int target) {
            //定义dp数组  dp[i] 表示总和为i一共有dp[i]种方法
            int[] dp = new int[target+1];
            //初始化dp数组
            dp[0] = 1;
            //因为本题强调了结果的排序性 所以我们先遍历背包在遍历物品求排列
            //先遍历背包
            for(int i=0;i<target+1;i++){
                //在遍历物品
                for(int j=0;j<nums.length;j++){
                    if(i>=nums[j]){
                        //dp[1] = 1   dp[2] = 2 
                        dp[i] += dp[i-nums[j]];
                    }
                }
            }        
            for(int i=0;i<dp.length;i++){
                System.out.print(dp[i]);
            }
            return dp[target];
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    力扣279.完全平方数

    给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

    完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

    示例 1:

    输入:n = 12
    输出:3 
    解释:12 = 4 + 4 + 4
    
    • 1
    • 2
    • 3

    示例 2:

    输入:n = 13
    输出:2
    解释:13 = 4 + 9
    
    • 1
    • 2
    • 3

    代码实现:

    class Solution {
        public int numSquares(int n) {
            //定义dp数组 dp[i] 表示返回和为i的最少数量
            int[] dp = new int[n+1];
            //初始化dp数组
            int max = Integer.MAX_VALUE;
            for(int i=0;i<dp.length;i++){
                dp[i] = max;
            }
            dp[0] = 0;
            //遍历dp数组 因为题目强调的是求最少数量 因此遍历顺序都可
            //先遍历金额
            for(int i=1;i*i<=n;i++){
                //在遍历背包  为什么j=i*i 
                //是因为如果j
                for(int j=i*i;j<n+1;j++){
                    //只有当放入这个数后剩余背包能放下的数量不为max才有意义 不然无法组成n
                    if(dp[j-i*i]!=max){
                        dp[j] = Math.min(dp[j],dp[j-i*i]+1);
                    }
                }
            }
            return dp[n];
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    力扣139.单词拆分

    给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true

    **注意:**不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

    示例 1:

    输入: s = "leetcode", wordDict = ["leet", "code"]
    输出: true
    解释: 返回 true 因为 "leetcode" 可以由 "leet" 和 "code" 拼接成。
    
    • 1
    • 2
    • 3

    示例 2:

    输入: s = "applepenapple", wordDict = ["apple", "pen"]
    输出: true
    解释: 返回 true 因为 "applepenapple" 可以由 "apple" "pen" "apple" 拼接成。
         注意,你可以重复使用字典中的单词。
    
    • 1
    • 2
    • 3
    • 4

    示例 3:

    输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
    输出: false
    
    • 1
    • 2

    实现方法:

    class Solution {
        public boolean wordBreak(String s, List<String> wordDict) {
            //定义dp数组 dp[i]表示从0-i区间的满不满足条件 若满足条件设为true不满足为false
            boolean[] dp = new boolean[s.length()+1];
            //利用hashset来去重
            HashSet<String> set = new HashSet<>(wordDict);
            //初始化dp数组
            dp[0] = true;
            //遍历
            for(int i=0;i<s.length()+1;i++){
                for(int j=0;j<i;j++){
                    //如果截取下来的字符串能匹配到 并且他截取之前的串也满足条件 那么他们俩都满足条件
                    if(set.contains(s.substring(j,i)) && dp[j]){
                        dp[i] = true;
                    }
                }
            }
            return dp[s.length()];
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    小结

    零钱兑换问题中,要求出装满背包所需的最少硬币个数,装不满则返回-1

    首先考虑,要当背包容量即总金额大于硬币价值我们才能进行兑换

    在这道题中值得留意的是,我们每放入一个硬币则需要让dp数组值+1 而不是以往的加入硬币价值

    零钱兑换II组合总和问题中,就是给你一堆零钱(零钱个数无限),为凑成amount的组合数有几种。

    注意这里组合数和排列数的区别!(排列强调顺序性,组合不强调)

    这里在遍历顺序上可就有说法了。

    • 如果求组合数就是外层for循环遍历物品,内层for遍历背包。
    • 如果求排列数就是外层for遍历背包,内层for循环遍历物品。

    完全平方数这道题求的是给定正整数 n,找到若干个完全平方数使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

    所以类似于零钱兑换II问题,不过这次我们不是放的硬币价值了 而是放的硬币价值的平方,将递推式稍微修改即可

    单词拆分这道题我们要想到本题其实我们求的是排列数,为什么呢?

    拿 s = “applepenapple”, wordDict = [“apple”, “pen”] 举例。

    “apple”, “pen” 是物品,那么我们要求 物品的组合一定是 “apple” + “pen” + “apple” 才能组成 “applepenapple”。

    “apple” + “apple” + “pen” 或者 “pen” + “apple” + “apple” 是不可以的,那么我们就是强调物品之间顺序。

    所以说,本题一定是 先遍历 背包,再遍历物品

    其中一定要深刻理解dp[i]表示的是截取s字符串0-i区间是否可以组成,在此基础上我们在判断新截取的那个字符我们能否在set集合中找到

    多重背包问题

    有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

    多重背包和01背包是非常像的, 为什么和01背包像呢?

    每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

    例如:

    背包最大重量为10。

    物品为:

    重量价值数量
    物品01152
    物品13203
    物品24302

    问背包能背的物品最大价值是多少?

    和如下情况有区别么?

    重量价值数量
    物品01151
    物品01151
    物品13201
    物品13201
    物品13201
    物品24301
    物品24301

    毫无区别,这就转成了一个01背包问题了,且每个物品只用一次。

        public static void main(String[] args) {
            int[] weight = {1, 3, 4};
            int[] value = {15, 20, 30};
            int[] nums = {1,2,2};
            int bagWight = 4;
            testWeightBagProblem(weight, value, bagWight);
        }
    
        public static void testWeightBagProblem(int[] weight, int[] value, int bagWeight){
            int wLen = weight.length;
            //定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值
            int[] dp = new int[bagWeight + 1];
            //遍历顺序:先遍历物品,再遍历背包容量
            for (int i = 0; i < wLen; i++){
                //这里注意 使用一维数组解决01背包问题 背包大小需要倒序遍历以避免重复获取物品
                for (int j = bagWeight; j >= weight[i]; j--){
                    //这里遍历物品的数量 是把多重背包问题转化为01背包的关键
                	for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
                    	dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
                	}
                }
            }
            //打印dp数组
            for (int j = 0; j <= bagWeight; j++){
                System.out.print(dp[j] + " ");
            }
        }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27

    从代码里可以看出是01背包里面在加一个for循环遍历一个每种商品的数量。 和01背包还是如出一辙的。

  • 相关阅读:
    常用测试用例设计方法之正交实验法详解
    头歌-贪心算法
    无人驾驶迎来新高度!以后每辆车都有这些功能...
    广义表的存储结构及其基本运算
    如何在 Java 中使用 MQTT
    mysql出现提示错误10061的解决方法
    软考 - 网络工程师考试大纲
    损失函数总结(五):PoissonNLLLoss、GaussianNLLLoss
    『购物好评(通用100字)』
    统计聚类法的基本步骤:
  • 原文地址:https://blog.csdn.net/ilove_sf/article/details/136200022