• 【OpenCV】在MacOS上源码编译OpenCV


    前言
    在做视觉任务时,我们经常会用到开源视觉库OpenCV,OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,它具有C++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS。 最近在项目中,我遇到了在MacOS上使用OpenCV需求,目前OpenCV官网上并没有提供OpenCV现成的安装包,因此在此处我们需要自己进行编译,所以在此处我们将结合``opencv_4.8.0``、``opencv_contril_4.8.0``,演示如何源码编译并使用

    1. 下载项目源码

      首先下载项目源码,这里我们下载的是4.8.0,大家可以根据自己的需求进行下载,不过要尽量保证opencvopencv_contril源码版本一致。通过下面代码我们进行源码下载:

    wget https://github.com/opencv/opencv/archive/4.8.0.zip
    wget https://github.com/opencv/opencv_contrib/archive/refs/tags/4.8.0.zip
    

      下载完代码后,将代码文件解压到当前文件中,如下图所示:
    image

    2. 创建CMake编译文件

      OpenCV支持CMake编译,所以此处需要安装CMake,安装方式此处不做讲解。输入一下指令,打开并创建编译文件夹:

    cd opencv-4.8.0
    mkdir build && cd build
    

      接下来输入CMake指令,进行CMake编译,此处需要注意三个路径:

    • CMAKE_INSTALL_PREFIX=表示编译好的OpenCV安装路径,可以指定到系统路径,也可以是自定义路径,此处设置为:/Users/ygj/3lib/opencv_4.8.0/include/opencv4/opencv2,注意这个路径,后续编译C++项目时会用到。
    • OPENCV_EXTRA_MODULES_PATH=表示扩展模块的路径,就是上文我们下载的opencv_contril_4.8.0文件,在此处设置为/Users/ygj/3lib/opencv_build/opencv_contrib-4.8.0/modules
    • PYTHON3_EXECUTABLE=表示本计算机Python的安装路径,此处也可以不设置,主要就是设置要不要生成Python依赖库。如果设置了,需要开启BUILD_opencv_python2=ON或者BUILD_opencv_python3=ON,具体按照你的电脑中安装的Python版本决定。
      设定好上面三个路径后,就可以在终端输入以下指令,进行CMake编译:
    cmake -DCMAKE_SYSTEM_PROCESSOR=arm64 -DCMAKE_OSX_ARCHITECTURES=arm64 -DWITH_OPENJPEG=OFF -DWITH_IPP=OFF -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX= -D OPENCV_EXTRA_MODULES_PATH= -D PYTHON3_EXECUTABLE= -D BUILD_opencv_python2=OFF -D BUILD_opencv_python3=ON -D INSTALL_PYTHON_EXAMPLES=ON -D INSTALL_C_EXAMPLES=OFF -D OPENCV_ENABLE_NONFREE=ON -D BUILD_EXAMPLES=ON ..
    

    image

      编译完成后如下图所示,不过此处要注意一点,在编译时会下载相关的第三方库,要保证网络通畅,防止下载失败。
    image

    3. 编译安装

      上一步完成CMake编译后,就可以进行make编译了,只需要输入一下指令即可,-j8表示用8个核心进行编译,具体设置可以根据你的电脑进行设置,数值越大编译越快。

    make -j8
    

      编译完成后,如下图所示:

    image

      接下来就是进行安装,只需要一下指令就可:

    make install
    

      安装完成后,会在你上文设置的安装路径下生成依赖文件,如下图所示:
    image

    4. 案例测试

      首先创建一个新的C++文件main.cpp文件,在文件中添加以下代码:

    #include "opencv2/opencv.hpp"
    
    int main(){
        std::cout<<"hello opencv!"<imread("image.jpg");
        if (!image.empty())
        {
            std::cout << "image is OK!" << std::endl;
        }
        std::cout << "图像的宽度是:" << image.rows << std::endl;
        std::cout << "图像的高度是:" <"图像的通道数是:" << image.channels() << std::endl;
        cv::Mat image1;
        cv::cvtColor(image,image1,cv::COLOR_RGB2GRAY);
        cv::imshow("image",image);
        cv::imshow("image1",image1);
        cv::waitKey(0);
        std::cout<<"hello opencv!"<return 0;
    }
    

      这一段代码主要是读取本地图片文件,获取并输出图片的基本信息,然后使用窗口将图片展示出来。

      此处编译方式采用CMake编译方进行编译,定义的CMakeLists.txt文件如下所示:

    cmake_minimum_required(VERSION 3.28)
    project(opencv)
    set(OpenCV_DIR /Users/ygj/3lib/opencv_4.8.0/lib/cmake/opencv4)
    find_package(OpenCV REQUIRED)
    message(STATUS "OpenCV_DIR = ${OpenCV_DIR}")
    message(STATUS "OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}")
    message(STATUS "OpenCV_LIBS = ${OpenCV_LIBS}")
    include_directories(
        ${OpenCV_INCLUDE_DIRS}
    )
    add_executable( main main.cpp )
    target_link_libraries( main ${OpenCV_LIBS} )
    

      在CMakeLists文件中,我们通过find_package(OpenCV REQUIRED)查找本计算机安装的OpenCV依赖库,但是需要在之前指定OpenCV的安装路径。写完Cmake文件后,在命令行中输入cmake .进行运行,输出结果如下图所示:
    image

      可以看出,CMake已经成功找到了本计算机安装的OpenCV路径,并获取了项目编译所需要的所有信息。
    如果CMake没有任何问题,接下来就进行项目编译,只需要输入make指令即可,输出如下所示:
    image

    make之后,会在项目文件夹中生成一个main文件,接下来直接运行该文件,斌可以的到如下图所示的输出:

    image

    5. 总结

      在本项目中,我们实现了在MacOS系统上源码编译OpenCV,并在VS Code上使用OpenCV做了项目测试,最后成功实现了在MacOS系统上使用我们源码编译OpenCV的链接库,进行了图片处理。

  • 相关阅读:
    核心实验16_端口镜像_ENSP
    Allegro基本规则设置指导书之Same Net Spacing规则设置
    微信小程序-wxml语法
    Tomcat经验1
    高防服务器能够抵御哪些攻击?
    游戏报错d3dcompiler_47.dll缺失怎么修复,总结多种修复方法
    杠杆炒股中吸筹是什么?
    腾讯云服务器便宜吗?价格多少?附腾讯云服务器优惠购买链接
    C语言:操作符详解(2)
    C语言 内存操作函数
  • 原文地址:https://www.cnblogs.com/guojin-blogs/p/17942923