• 实例详解在Go中构建流数据pipeline


    本文分享自华为云社区《Go并发范式 流水线和优雅退出 Pipeline 与 Cancellation》,作者:张俭。

    介绍

    Go 的并发原语可以轻松构建流数据管道,从而高效利用 I/O 和多个 CPU。 本文展示了此类pipelines的示例,强调了操作失败时出现的细微之处,并介绍了干净地处理失败的技术。

    什么是pipeline?

    pipeline在Go中并没有书面的定义,只是众多并发程序中的一种。非正式地,pipeline由一系列stage组成。每个stage是运行着同一个function的协程组。在每个stage,协程们

    • 通过inbound channel从上游获取数据
    • 在data上进行运算,通常会产生新的值
    • 通过outbound channel向下游发送数据

    每个Stage都有数个inbound channel和outbound channel,除了第一个和最后一个Stage,分别只有outbound和inbound channel。第一个Stage通常叫做SourceProducer。最后一个Stage通常叫做SinkConsumer

    我们将从一个简单的示例pipeline开始来解释这些想法和技术。 稍后,我们将提供一个更实际的例子。

    Squaring numbers 平方数

    考虑一个有着三个阶段的流水线。

    第一阶段,gen,是个将整数列表转换为一个发射列表中整数的channel的函数。gen函数启动一个go routine,用来发送channel中的整数,然后当所有的整数都被发出后,将channel关闭:

    复制代码
    func gen(nums ...int) <-chan int {
        out := make(chan int)
        go func() {
            for _, n := range nums {
                out <- n
            }
            close(out)
        }()
        return out
    }
    复制代码

    第二阶段,sq从上面的channel中接收数据,返回一个发射对应整数平方数的channel。当inbound channel关闭后,并且这一阶段将所有的value发送到下游后,再将这个outbound channel关闭

    复制代码
    func sq(in <-chan int) <-chan int {
        out := make(chan int)
        go func() {
            for n := range in {
                out <- n * n
            }
            close(out)
        }()
        return out
    }
    复制代码

    main函数组织整个pipeline,并且运行最终的stage:从第二个stage中接收数据然后逐个打印,直到channel被关闭

    复制代码
    func main() {
        // Set up the pipeline
        c := gen(2, 3)
        out := sq(c)
    
        // Consume the output
        // 4
        fmt.Println(<-out)
        // 9
        fmt.Println(<-out)
    }
    复制代码

    既然sq的inbound channel和outbound channel类型相同,我们可以将其进行任意数量的组合。我们还可以将main函数重写为循环,就像在其他Stage中做的那样一样。

    复制代码
    func main() {
        // Set up the pipeline and consume the output.
        for n := range sq(sq(gen(2, 3))) {
            fmt.Println(n) // 16 then 81
        }
    }
    复制代码

    扇入和扇出

    许多函数可以从一个channel中获取数据直到channel被关闭,这被叫做扇出。这提供了一种在worker之间分配工作以并行化 CPU 使用和 I/O 的方法。

    一个函数可以通过将多个input channel多路复用到同一个channel,当所有的channel关闭时,该多路复用channel才关闭。从而达到从多个input获取数据并处理,直到所有input channel都关闭才停止的效果。这叫做扇入。

    我们可以将我们的流水线改为运行两个sq,每个都从相同的channel读取数据。我们引入一个新的函数merge,来做扇入的工作

    复制代码
    func main() {
        in := gen(2, 3)
    
        // Distribute the sq work across two goroutines that both read from in.
        c1 := sq(in)
        c2 := sq(in)
    
        // Consume the merged output from c1 and c2.
        for n := range merge(c1, c2) {
            fmt.Println(n) // 4 then 9, or 9 then 4
        }
    }
    复制代码

    merge函数通过对每个channel开启一个协程,把数据拷贝到另一个out channel中,实现将channel列表转换为一个channel的效果。当所有send操作完成后,再将out channel关闭。

    向一个已经关闭上的channel发送数据会导致panic,所以保证发送完所有再关闭channel至关重要。sync.WaitGroup提供了一个简单地方式来编排这个同步

    复制代码
    func merge(cs ...<-chan int) <-chan int {
        var wg sync.WaitGroup
        out := make(chan int)
    
        // Start an output goroutine for each input channel in cs. output
        // copies values from c to out until c is closed, then calls wg.Done
        output := func(c <-chan int) {
            for n := range c {
                out <- n
            }
            wg.Done()
        }
        wg.Add(len(cs))
        for _, c := range cs {
            go output(c)
        }
        // Start a goroutine to close out once all the output goroutines are
        // done.  This must start after the wg.Add call.
        go func() {
            wg.Wait()
            close(out)
        }()
        return out
    }
    复制代码

    短暂的停顿

    我们的pipeline函数有这样的模式:

    • 当发送任务结束后,关闭发送output channel
    • 直到input channel关闭前,一直从input channel中接收消息

    这个模式下,每个阶段都可以用协程+for循环的模式来书写,保证每个数据发送到下游后再关闭所有协程。

    但是在实际的pipeline中,阶段并不总是接收所有来自inbound channel的数据。通常,如果inbound的值出现了错误,pipeline会提前退出。 在任何一种情况下,接收者都不必等待剩余值到达,并且我们希望fast fail(较早阶段的Stage尽早停止后期Stage不需要的值)。

    在我们的示例pipeline中,如果一个Stage未能消费所有inbound值,则尝试计算后并发送这些值的 goroutine 将无限期阻塞:

    复制代码
        // Consume the first value from the output.
        out := merge(c1, c2)
        fmt.Println(<-out) // 4 or 9
        return
        // Since we didn't receive the second value from out,
        // one of the output goroutines is hung attempting to send it.
    }
    复制代码

    这就导致了资源泄漏:协程消耗内存、运行资源,并且在协程栈内的golang堆引用导致垃圾无法回收。协程只能自己退出,不能由垃圾回收机制回收。

    即使下游的Stage无法接收所有inbound value,我们也需要把上游的协程退出。如果把上游的协程改为有buffer的,可以解决上面的问题。如果Buffer中还有空间,则发送操作可以立刻完成

    c := make(chan int, 2) // buffer size 2
    c <- 1  // succeeds immediately
    c <- 2  // succeeds immediately
    c <- 3  // blocks until another goroutine does <-c and receives 1

    当要发送的数目可以在channel创建时知道时,buffer可以简化代码。举个例子,让我们来使用buffer channel,不开辟新的协程来重写gen方法:

    复制代码
    func gen(nums ...int) <-chan int {
        out := make(chan int, len(nums))
        for _, n := range nums {
            out <- n
        }
        close(out)
        return out
    }
    复制代码

    在我们的pipeline中,我们就需要在merge方法中使用的channel添加buffer:

    func merge(cs ...<-chan int) <-chan int {
        var wg sync.WaitGroup
        out := make(chan int, 1) // enough space for the unread inputs
        // ... 其余的没有变更 ...

    尽管上面这个方案修复了阻塞的问题,但它是很差的方案。这里有一个对1的硬编码,这太脆弱了?你真的能预料到有多少个值不能被正常发送吗?一旦两个值不能正常发送,你的协程又阻塞了。

    作为替代,我们需要给下游阶段提供一个机制,知会下游阶段,发送者已经停止发送了。

    Explicity cancellation 显示取消

    main函数决定不从out处接收所有数据,而是退出时,它必须知会上游阶段的协程放弃接下来的发送。它通过向一个名叫done的channel发送数据来完成这个动作。因为发送方有两个,所以 向done发送两次数据。

    复制代码
    func main() {
        in := gen(2, 3)
    
        // Distribute the sq work across two goroutines that both read from in.
        c1 := sq(in)
        c2 := sq(in)
    
        // Consume the first value from output.
        done := make(chan struct{}, 2)
        out := merge(done, c1, c2)
        fmt.Println(<-out) // 4 or 9
    
        // Tell the remaining senders we're leaving.
        done <- struct{}{}
        done <- struct{}{}
    }
    复制代码

    发送到out channel的发送者把原来的逻辑替换成一个select操作,select或者发送一个数据,抑或从done处接收到数据。因为done中数据值的类型根本不重要,主要是接收到值这个事件本身很重要,所以done channel的类型时struct {}output循环继续在inbound channel上执行,所以上游的阶段并没有被阻塞。(我们稍后会讨论如何让循环迅速返回。)

    复制代码
    func merge(done <-chan struct{}, cs ...<-chan int) <-chan int {
        var wg sync.WaitGroup
        out := make(chan int)
    
        // Start an output goroutine for each input channel in cs.  output
        // copies values from c to out until c is closed or it receives a value
        // from done, then output calls wg.Done.
        output := func(c <-chan int) {
            for n := range c {
                select {
                case out <- n:
                case <-done:
                }
            }
            wg.Done()
        }
        // ... the rest is unchanged ...
    复制代码

    这个方法有一个问题:每一个下游接收者都需要知道可能阻塞的上游发送者总数。维护它们的数目,是一个琐碎又容易出错的事情。

    我们需要一个机制来让不可知的、无界的发送协程来停止发送到下游的值。在Go,我们可以通过关闭channel来完成这件事,因为在已经关闭的channel上执行receive操作,会立刻返回该元素的零值。

    这说明main函数可以简单地通过关闭done channel来让所有的发送者不阻塞。关闭操作是一个高效的广播。我们把pipeline中的每个函数都接受done作为参数,并把done在defer语句中关闭, 这样,如果在main函数中返回,都会通知pipeline中的阶段退出。

    复制代码
    func main() {
        // Set up a done channel that's shared by the whole pipeline,
        // and close that channel when this pipeline exits, as a signal
        // for all the goroutines we started to exit.
        done := make(chan struct{})
        defer close(done)
    
        in := gen(done, 2, 3)
    
        // Distribute the sq work across two goroutines that both read from in.
        c1 := sq(done, in)
        c2 := sq(done, in)
    
        // Consume the first value from output.
        out := merge(done, c1, c2)
        fmt.Println(<-out) // 4 or 9
    
        // done will be closed by the deferred call.
    }
    复制代码

    现在当donechannel关闭后,接收到close信息的阶段,都可以直接退出了。merge函数中的outout协程可以不从inbound channel中取数据直接退出,因为它知道,上游的发送sq,接收到close信息,也会直接退出。output通过defer语句来保证wg.Done()一定被调用。(译者注:来关闭out channel)

    复制代码
    func merge(done <-chan struct{}, cs ...<-chan int) <-chan int {
        var wg sync.WaitGroup
        out := make(chan int)
    
        // Start an output goroutine for each input channel in cs.  output
        // copies values from c to out until c or done is closed, then calls
        // wg.Done.
        output := func(c <-chan int) {
            defer wg.Done()
            for n := range c {
                select {
                case out <- n:
                case <-done:
                    return
                }
            }
        }
        // ... the rest is unchanged ...
    复制代码

    相似的,当接收到close信号时,sq函数也可以立刻返回。sq通过defer语句来保证outchannel一定被关闭。

    这是给构建pipeline的一些指导:

    • 当所有的发送操作完成后,关闭outbound channel
    • 如果发送发不阻塞,或是channel没有关闭,接收者会一直从channel中接收数据

    Pipeline通过如下两个方式来解除发送者的阻塞

    • 确保channel的buffer足够大
    • 显示知会发送者,接收者已经放弃接收

    Digesting a tree 对树进行摘要

    让我们来考虑一个更实际的pipeline

    MD5 是一种消息摘要算法,可用作文件校验和。 命令行实用程序 md5sum 打印文件列表的摘要值。

    % md5sum *.go
    d47c2bbc28298ca9befdfbc5d3aa4e65  bounded.go
    ee869afd31f83cbb2d10ee81b2b831dc  parallel.go
    b88175e65fdcbc01ac08aaf1fd9b5e96  serial.go

    我们的示例程序类似于 md5sum,但将单个目录作为参数并打印该目录下每个常规文件的摘要值,按路径名排序。

    % go run serial.go .
    d47c2bbc28298ca9befdfbc5d3aa4e65  bounded.go
    ee869afd31f83cbb2d10ee81b2b831dc  parallel.go
    b88175e65fdcbc01ac08aaf1fd9b5e96  serial.go

    我们的主函数调MD5All这个辅助函数,返回路径名和摘要值的map,main函数再将它们排序打印

    复制代码
    func main() {
        // Calculate the MD5 sum of all files under the specified directory,
        // then print the results sorted by path name.
        m, err := MD5All(os.Args[1])
        if err != nil {
            fmt.Println(err)
            return
        }
        var paths []string
        for path := range m {
            paths = append(paths, path)
        }
        sort.Strings(paths)
        for _, path := range paths {
            fmt.Printf("%x  %s\n", m[path], path)
        }
    }
    复制代码

    MD5All函数是我们讨论的重点。在如下串行化的实现中,没有使用并发技术,只是简单对文件进行了遍历

    复制代码
    // MD5All reads all the files in the file tree rooted at root and returns a map
    // from file path to the MD5 sum of the file's contents.  If the directory walk
    // fails or any read operation fails, MD5All returns an error.
    func MD5All(root string) (map[string][md5.Size]byte, error) {
        m := make(map[string][md5.Size]byte)
        err := filepath.Walk(root, func(path string, info os.FileInfo, err error) error {
            if err != nil {
                return err
            }
            if !info.Mode().IsRegular() {
                return nil
            }
            data, err := ioutil.ReadFile(path)
            if err != nil {
                return err
            }
            m[path] = md5.Sum(data)
            return nil
        })
        if err != nil {
            return nil, err
        }
        return m, nil
    }
    复制代码

    并行计算摘要

    在并行的解法中,我们将MD5All分割为两个阶段的pipeline。第一个阶段,sumFiles,遍历文件树,针对每个文件,在新的协程中计算摘要,然后把结果发送到channel中,这是result的类型

    type result struct {
        path string
        sum  [md5.Size]byte
        err  error
    }

    sumFiles返回两个channel:一个是result channel,另一个是filepath.Walk中产生的错误。walk函数针对每个文件启动一个新的协程来处理,然后检查donechannel。如果done已经被关闭,walk函数会立刻停止:

    复制代码
    func sumFiles(done <-chan struct{}, root string) (<-chan result, <-chan error) {
        // For each regular file, start a goroutine that sums the file and
        // sends the result on c.
        // Send the result of the walk on errc.
        c := make(chan result)
        errc := make(chan error, 1)
        go func() {
            var wg sync.WaitGroup
            // If any error occurred, walk method will return
            err := filepath.Walk(root, func(path string, info fs.FileInfo, err error) error {
                if err != nil {
                    return err
                }
                if !info.Mode().IsRegular() {
                    return nil
                }
                wg.Add(1)
                go func() {
                    data, err := ioutil.ReadFile(path)
                    select {
                    case c <- result{
                        path: path,
                        sum:  md5.Sum(data),
                        err:  err,
                    }:
                    case <-done:
                    }
                    wg.Done()
                }()
                // Abort the walk if done is closed.
                select {
                case <-done:
                    return errors.New("walk canceled")
                default:
                    return nil
                }
            })
            // Walk has returned, so all calls to wg.Add are done.
            // Start a goroutine to close c once all the sends are done.
            // No select needed here, since errc is buffered.
            errc <- err
        }()
        return c, errc
    }
    复制代码

    MD5Allc中接收到摘要数据。当发生错误时,MD5All会迅速返回,通过defer语句来关闭done channel

    复制代码
    func MD5All(root string) (map[string][md5.Size]byte, error) {
        // MD5All closes the done channel when it returns; it may do so before
        // receiving all the values from c and errc.
        done := make(chan struct{})
        defer close(done)
    
        c, errc := sumFiles(done, root)
    
        m := make(map[string][md5.Size]byte)
        for r := range c {
            if r.err != nil {
                return nil, r.err
            }
            m[r.path] = r.sum
        }
        if err := <-errc; err != nil {
            return nil, err
        }
        return m, nil
    }
    复制代码

    有界的并行

    parallel.go 中的 MD5All 实现为每个文件启动一个新的 goroutine。 在包含许多大文件的目录中,这可能会分配比机器上可用的内存更多的内存。

    我们可以通过限制并行读取的文件数量来限制这些分配。 在新的解决方式中,我们通过创建固定数量的 goroutine 来读取文件来做到这一点。 我们的pipeline现在分为三个阶段:遍历树、读取并计算文件摘要以及收集摘要。

    第一阶段 walkFiles 发射出文件树中常规文件的路径:

    复制代码
    func walkFiles(done <-chan struct{}, root string) (<-chan string, <-chan error) {
        paths := make(chan string)
        errc := make(chan error, 1)
        go func() {
            // Close the paths channel after Walk returns.
            defer close(paths)
            // No select needed for this send, since errc is buffered.
            errc <- filepath.Walk(root, func(path string, info os.FileInfo, err error) error {
                if err != nil {
                    return err
                }
                if !info.Mode().IsRegular() {
                    return nil
                }
                select {
                case paths <- path:
                case <-done:
                    return errors.New("walk canceled")
                }
                return nil
            })
        }()
        return paths, errc
    }
    复制代码

    第二阶段启动固定数量的协程来计算文件摘要,然后发送到c channel中

    复制代码
    func digester(done <-chan struct{}, paths <-chan string, c chan<- result) {
        for path := range paths {
            data, err := ioutil.ReadFile(path)
            select {
            case c <- result{path, md5.Sum(data), err}:
            case <-done:
                return
            }
        }
    }
    复制代码

    和之前的示例不同,因为多个协程都在共享channel上发送数据,digester函数并没有关闭output channel。作为替代,当所有的digesters跑完之后,MD5All会关闭channel

    复制代码
        // Start a fixed number of goroutines to read and digest files.
        c := make(chan result)
        var wg sync.WaitGroup
        const numDigesters = 20
        wg.Add(numDigesters)
        for i := 0; i < numDigesters; i++ {
            go func() {
                digester(done, paths, c)
                wg.Done()
            }()
        }
        go func() {
            wg.Wait()
            close(c)
        }()
    复制代码

    这里也可以针对每个digester开启独立的channel,不过到时候就要对channel进行扇入处理。

    最终阶段从c中取得所有结果,并且检查errc中的错误。此检查不能更早发生,因为在此之前,walkFiles 可能会阻塞:

    (译者注:要保证检查errc的错误,发生在filePath.Walk启动后,done不会再次发送了,协程就不会退出)

    复制代码
       m := make(map[string][md5.Size]byte)
        for r := range c {
            if r.err != nil {
                return nil, r.err
            }
            m[r.path] = r.sum
        }
        // Check whether the Walk failed.
        if err := <-errc; err != nil {
            return nil, err
        }
        return m, nil
    }
    复制代码

    总结

    本文介绍了在 Go 中构建流数据pipeline的技术。 处理此类pipeline中的故障很棘手,因为pipeline中的每个阶段可能会阻止尝试向下游发送值,并且下游阶段可能不再关心传入的数据。 我们展示了关闭通道如何向管道启动的所有 goroutine 广播“done”信号,并定义了正确构建管道的指南。

     

    点击关注,第一时间了解华为云新鲜技术~

     

  • 相关阅读:
    少林派问题汇总2
    苹果推出iOS15.2正式版,“数字遗产”计划正式上线,你的“继承人”是谁?
    洛谷基础题练习5
    TextRank算法实践
    你能猜出这是什么代码吗
    Ubuntu 安装 Docker 的详细步骤
    【数据结构】——顺序表(增删查改)
    rocky(centos) 安装redis,并设置开机自启动
    【SQL刷题】Day13----SQL分组数据专项练习
    二叉树题目:二叉树剪枝
  • 原文地址:https://www.cnblogs.com/huaweiyun/p/18024570