• OpenAI Completions API 、Chat Completions API的核心参数


    OpenAI Completions API 的核心参数包括以下几个:

    1、prompt(提示):这是你希望模型开始生成文本的初始字符串。模型会在这个字符串的基础上生成剩余的文本。

    2、max_tokens(最大令牌数):这是模型生成的最大令牌数。一般来说,英文中一个单词或者标点符号大约是一个令牌。如果不指定这个参数,模型可能会生成非常长的文本。

    3、temperature(温度):温度值用于控制模型生成文本的随机性。温度值越高,模型生成的文本就越随机;温度值越低,模型则趋向于生成最有可能的输出。例如,温度为 1.0 会使输出更随机,而温度为 0.0 会使模型只生成最有可能的输出。

    4、top_p(nucleus 概率采样):这是一个高级参数,用于控制输出的随机性。当 top_p 设置为 0.5,意味着在生成每个令牌时,模型只考虑总概率质量为 0.5 的最小令牌集。这有时被称为 "nucleus sampling"。

    5、frequency_penalty 和 presence_penalty:这两个参数可以用来惩罚或奖励特定令牌的使用。frequency_penalty 可以降低或增加常见词的频率,而 presence_penalty 可以降低或增加新词的出现。

    记住,使用这些参数时,你可能需要进行一些试验,以找到最适合你特定用途的设置。

    OpenAI的Chat Completions API与之前的Completions API有些许不同,它更适合于多轮对话。以下是Chat Completions API的主要参数:

    1. messages(消息):这是一个消息对象的数组,每个消息对象都有一个 "role"(角色)和"content"(内容)。角色可以是 'system'、'user' 或 'assistant',而内容包含了该角色的文字信息。

    2. max_tokens(最大令牌数):这是模型生成的最大令牌数。如果不指定这个参数,模型可能会生成非常长的文本。

    3. temperature(温度):这个参数控制输出的随机性。数值越高,输出结果就会越随机;数值越低,输出结果则会越确定。

    4. top_p(nucleus 概率采样):这是一个高级参数,用于控制输出的随机性。当 top_p 设置为 0.5,意味着在生成每个令牌时,模型只考虑总概率质量为 0.5 的最小令牌集。这有时被称为 "nucleus sampling"。

    5. frequency_penaltypresence_penalty:这两个参数可以用来惩罚或奖励特定令牌的使用。frequency_penalty 可以降低或增加常见词的频率,而 presence_penalty 可以降低或增加新词的出现。

    与之前的Completions API不同,Chat API在模型中使用了对话的历史信息,从而更好地理解上下文并生成更相关的回复。

  • 相关阅读:
    C和指针 第14章 预处理器 14.5 其他指令
    集合框架(二)前置知识
    web前端课程设计 HTML+CSS+JavaScript旅游风景云南城市网页设计与实现 web前端课程设计代码 web课程设计 HTML网页制作代码
    FFMpeg AVFrame 的概念.
    leetcode200题模式总结
    创建镜像发布到镜像仓库【不依赖docker环境】
    AI全栈大模型工程师(六)进阶技巧
    API 接口参数签名的几种方案
    Kafka - Kafka的安装与命令行操作
    基于Spring Boot+Unipp的校园志愿者小程序(图形化分析)
  • 原文地址:https://blog.csdn.net/chunmiao3032/article/details/134509176