在介绍完了DownloadAction之后,还剩下FilesystemVerifierAction和PostinstallRunnerAction,下面开始对其进行分析。
FilesystemVerifierAction
在数据下载完成后,在DownloadAction中会切换到FilesystemVerifierAction
void DownloadAction::TransferComplete(HttpFetcher* fetcher, bool successful) {
if (writer_) {
........
// Write the path to the output pipe if we're successful.
if (code == ErrorCode::kSuccess && HasOutputPipe())
SetOutputObject(install_plan_);
processor_->ActionComplete(this, code);
}
最后的ActionComplete会开始执行FilesystemVerifierAction。
src/system/update_engine/payload_consumer/filesystem_verifer_action.cc
1 void FilesystemVerifierAction::PerformAction() { 2 // Will tell the ActionProcessor we've failed if we return. 3 ScopedActionCompleter abort_action_completer(processor_, this); 4 5 if (!HasInputObject()) { 6 LOG(ERROR) << "FilesystemVerifierAction missing input object."; 7 return; 8 } 9 install_plan_ = GetInputObject(); //获取上一个Action传过来的install_plan_ 10 11 if (install_plan_.partitions.empty()) { 12 LOG(INFO) << "No partitions to verify."; 13 if (HasOutputPipe()) 14 SetOutputObject(install_plan_); 15 abort_action_completer.set_code(ErrorCode::kSuccess); 16 return; 17 } 18 19 StartPartitionHashing(); //开始计算分区的hash 20 abort_action_completer.set_should_complete(false); 21 }接着看StartPartitionHashing
1 void FilesystemVerifierAction::StartPartitionHashing() { 2 if (partition_index_ == install_plan_.partitions.size()) { //判断是否验证到了最后一个分区 3 Cleanup(ErrorCode::kSuccess); 4 return; 5 } 6 InstallPlan::Partition& partition = 7 install_plan_.partitions[partition_index_]; 8 9 string part_path; 10 switch (verifier_step_) { //默认值是KVerifyTargetHash 11 case VerifierStep::kVerifySourceHash: 12 part_path = partition.source_path; 13 remaining_size_ = partition.source_size; 14 break; 15 case VerifierStep::kVerifyTargetHash: 16 part_path = partition.target_path; //分区的路径 17 remaining_size_ = partition.target_size; //大小 18 break; 19 } 20 LOG(INFO) << "Hashing partition " << partition_index_ << " (" 21 << partition.name << ") on device " << part_path; 22 if (part_path.empty()) 23 return Cleanup(ErrorCode::kFilesystemVerifierError); 24 25 brillo::ErrorPtr error; 26 src_stream_ = brillo::FileStream::Open( //打开对应的分区文件 27 base::FilePath(part_path), 28 brillo::Stream::AccessMode::READ, 29 brillo::FileStream::Disposition::OPEN_EXISTING, 30 &error); 31 32 if (!src_stream_) { 33 LOG(ERROR) << "Unable to open " << part_path << " for reading"; 34 return Cleanup(ErrorCode::kFilesystemVerifierError); 35 } 36 37 buffer_.resize(kReadFileBufferSize); //重置缓存区的大小 38 read_done_ = false; //未被读取完成 39 hasher_.reset(new HashCalculator()); //设置HashCalculator 40 41 // Start the first read. 42 ScheduleRead(); //开始读取 43 }首先判断是否验证的分区的所有hash,如果验证完成了,调用CleanUp做最后的工作。
CleanUp
1 void FilesystemVerifierAction::Cleanup(ErrorCode code) { 2 src_stream_.reset(); 3 // This memory is not used anymore. 4 buffer_.clear(); 5 6 if (cancelled_) 7 return; 8 if (code == ErrorCode::kSuccess && HasOutputPipe()) 9 SetOutputObject(install_plan_); 10 processor_->ActionComplete(this, code); 11 }可以看到主要就是清空缓存区,设置install_plan_,切换到下一个Action。如果没有验证完成,就获取要验证的分区路径和大小,这个大小只是要验证的大小,不一定是分区的真正大小。对于镜像文件而言1G的大小能被安装在2G的分区上。接下来调用ScheduleRead()开始进行验证。
ScheduleRead()
1 void FilesystemVerifierAction::ScheduleRead() { 2 size_t bytes_to_read = std::min(static_cast(buffer_.size()), 3 remaining_size_); //获取要读取数据的大小 4 if (!bytes_to_read) { //读取完成 5 OnReadDoneCallback(0); 6 return; 7 } 8 9 bool read_async_ok = src_stream_->ReadAsync( 10 buffer_.data(), 11 bytes_to_read, 12 base::Bind(&FilesystemVerifierAction::OnReadDoneCallback, 13 base::Unretained(this)), 14 base::Bind(&FilesystemVerifierAction::OnReadErrorCallback, 15 base::Unretained(this)), 16 nullptr); //开始读取 17 18 if (!read_async_ok) { 19 LOG(ERROR) << "Unable to schedule an asynchronous read from the stream."; 20 Cleanup(ErrorCode::kError); 21 } 22 } 获取读取数据的真实大小,开始读取数据。
1 void FilesystemVerifierAction::OnReadDoneCallback(size_t bytes_read) { 2 if (bytes_read == 0) { //读取完成 3 read_done_ = true; 4 } else { 5 remaining_size_ -= bytes_read; 6 CHECK(!read_done_); 7 if (!hasher_->Update(buffer_.data(), bytes_read)) { //计算hash 8 LOG(ERROR) << "Unable to update the hash."; 9 Cleanup(ErrorCode::kError); 10 return; 11 } 12 } 13 14 // We either terminate the current partition or have more data to read. 15 if (cancelled_) 16 return Cleanup(ErrorCode::kError); 17 18 if (read_done_ || remaining_size_ == 0) { 19 if (remaining_size_ != 0) { 20 LOG(ERROR) << "Failed to read the remaining " << remaining_size_ 21 << " bytes from partition " 22 << install_plan_.partitions[partition_index_].name; 23 return Cleanup(ErrorCode::kFilesystemVerifierError); 24 } 25 return FinishPartitionHashing(); //计算完成后 26 } 27 ScheduleRead(); //如果没有计算完成,继续计读取计算 28 }在这个方法中会对读取的数据进行hash计算,每次计算其实都是基于前一次的计算结果来进行的,不然就会有太对的数据加载到内存中,导致内存不足。当计算完成后
1 void FilesystemVerifierAction::FinishPartitionHashing() { 2 if (!hasher_->Finalize()) { 3 LOG(ERROR) << "Unable to finalize the hash."; 4 return Cleanup(ErrorCode::kError); 5 } 6 InstallPlan::Partition& partition = 7 install_plan_.partitions[partition_index_]; 8 LOG(INFO) << "Hash of " << partition.name << ": " 9 << Base64Encode(hasher_->raw_hash()); 10 11 switch (verifier_step_) { 12 case VerifierStep::kVerifyTargetHash: 13 if (partition.target_hash != hasher_->raw_hash()) { //对保存的targethash和计算得到的hash进行一个比较 14 LOG(ERROR) << "New '" << partition.name 15 << "' partition verification failed."; 16 if (partition.source_hash.empty()) { 17 // No need to verify source if it is a full payload. 18 return Cleanup(ErrorCode::kNewRootfsVerificationError); 19 } 20 // If we have not verified source partition yet, now that the target 21 // partition does not match, and it's not a full payload, we need to 22 // switch to kVerifySourceHash step to check if it's because the source 23 // partition does not match either. 24 verifier_step_ = VerifierStep::kVerifySourceHash; //计算source hash 25 } else { 26 partition_index_++; //计算下一个分区 27 } 28 break; 29 case VerifierStep::kVerifySourceHash: 30 if (partition.source_hash != hasher_->raw_hash()) { //保存的source hash和计算得到的也不相同 31 LOG(ERROR) << "Old '" << partition.name 32 << "' partition verification failed."; 33 LOG(ERROR) << "This is a server-side error due to mismatched delta" 34 << " update image!"; 35 LOG(ERROR) << "The delta I've been given contains a " << partition.name 36 << " delta update that must be applied over a " 37 << partition.name << " with a specific checksum, but the " 38 << partition.name 39 << " we're starting with doesn't have that checksum! This" 40 " means that the delta I've been given doesn't match my" 41 " existing system. The " 42 << partition.name << " partition I have has hash: " 43 << Base64Encode(hasher_->raw_hash()) 44 << " but the update expected me to have " 45 << Base64Encode(partition.source_hash) << " ."; 46 LOG(INFO) << "To get the checksum of the " << partition.name 47 << " partition run this command: dd if=" 48 << partition.source_path 49 << " bs=1M count=" << partition.source_size 50 << " iflag=count_bytes 2>/dev/null | openssl dgst -sha256 " 51 "-binary | openssl base64"; 52 LOG(INFO) << "To get the checksum of partitions in a bin file, " 53 << "run: .../src/scripts/sha256_partitions.sh .../file.bin"; 54 return Cleanup(ErrorCode::kDownloadStateInitializationError); 55 } 56 // The action will skip kVerifySourceHash step if target partition hash 57 // matches, if we are in this step, it means target hash does not match, 58 // and now that the source partition hash matches, we should set the error 59 // code to reflect the error in target partition. 60 // We only need to verify the source partition which the target hash does 61 // not match, the rest of the partitions don't matter. 62 return Cleanup(ErrorCode::kNewRootfsVerificationError); 63 } 64 // Start hashing the next partition, if any. 65 hasher_.reset(); //重置hash计算器 66 buffer_.clear(); //清空缓存 67 src_stream_->CloseBlocking(nullptr); 68 StartPartitionHashing(); //接着计算 69 }可见当一个分区的hash被计算出来的时候就会根据保存好的进行比较,如果target的hash不一致就会转向比较该分区的source hash,其实比较source hash主要就是为了确定错误的类型,只要target hash不一致,无论source hash是否一致都不会继续下一个分区的计算了。就这样一直到最后一个分区验证完后,执行最后一个Action,PostinstallRunnerAction。
PostinstallRunnerAction
PostinstallRunnerAction执行每个分区更新完后的postinstall script。但是在高通平台的,android8.0上无论是全包还是差分包升级并没有实质性的postinstall script。在PostinstallRunnerAction中仅仅是将target_slot标记为active状态。目前只分析于执行相关的代码。
src/system/update_engine/payload_consumer/postinstall_runner_action.cc
1 void PostinstallRunnerAction::PerformAction() { 2 CHECK(HasInputObject()); 3 install_plan_ = GetInputObject(); //获取install_plan_ 4 5 if (install_plan_.powerwash_required) { //是否需要进行数据的擦除 6 if (hardware_->SchedulePowerwash()) { 7 powerwash_scheduled_ = true; 8 } else { 9 return CompletePostinstall(ErrorCode::kPostinstallPowerwashError); 10 } 11 } 12 13 // Initialize all the partition weights. 14 partition_weight_.resize(install_plan_.partitions.size()); //初始化每个分区的权重 15 total_weight_ = 0; 16 for (size_t i = 0; i < install_plan_.partitions.size(); ++i) { 17 // TODO(deymo): This code sets the weight to all the postinstall commands, 18 // but we could remember how long they took in the past and use those 19 // values. 20 partition_weight_[i] = install_plan_.partitions[i].run_postinstall; 21 total_weight_ += partition_weight_[i]; //计算总的权重 22 } 23 accumulated_weight_ = 0; 24 ReportProgress(0); //更新进度 25 26 PerformPartitionPostinstall(); //开始真正的流程 27 }来看PerformPartitionPostinstall()
1 void PostinstallRunnerAction::PerformPartitionPostinstall() { 2 if (install_plan_.download_url.empty()) { 3 LOG(INFO) << "Skipping post-install during rollback"; 4 return CompletePostinstall(ErrorCode::kSuccess); 5 } 6 7 // Skip all the partitions that don't have a post-install step. 8 while (current_partition_ < install_plan_.partitions.size() && 9 !install_plan_.partitions[current_partition_].run_postinstall) { //run_postinstall为false 10 VLOG(1) << "Skipping post-install on partition " 11 << install_plan_.partitions[current_partition_].name; 12 current_partition_++; 13 } 14 if (current_partition_ == install_plan_.partitions.size()) 15 return CompletePostinstall(ErrorCode::kSuccess); 16 ................... 17 ................... 18 ................... 19 }在当前分析中run_postinstall为false,会跳过post-install。之后会直接执行CompletePostinstall(ErrorCode::kSuccess)
1 void PostinstallRunnerAction::CompletePostinstall(ErrorCode error_code) { 2 // We only attempt to mark the new slot as active if all the postinstall 3 // steps succeeded. 4 if (error_code == ErrorCode::kSuccess && 5 !boot_control_->SetActiveBootSlot(install_plan_.target_slot)) { //设置target_slot为active 6 error_code = ErrorCode::kPostinstallRunnerError; 7 } 8 9 ScopedActionCompleter completer(processor_, this); 10 completer.set_code(error_code); 11 12 if (error_code != ErrorCode::kSuccess) { 13 LOG(ERROR) << "Postinstall action failed."; 14 15 // Undo any changes done to trigger Powerwash. 16 if (powerwash_scheduled_) 17 hardware_->CancelPowerwash(); 18 19 return; 20 } 21 22 LOG(INFO) << "All post-install commands succeeded"; 23 if (HasOutputPipe()) { //设置输出的install_plan 24 SetOutputObject(install_plan_); 25 } 26 }最终将target_slot设置为active在重启之后就会从target_slot开始启动了。
分析到这里就算是对update_engine的核心过程有了个大概的了解,除了对升级的知识点的认识,还体会到了它的架构。不足之处就是还有很多的细节未涉及。