• MR素数测试及 pycryptodome库下 已知MR伪素数以及强伪证 生成指定伪随机数生成器绕过素性检测


    MR素数测试在密码学库中应用广泛,通常作为BSPW的一部分来进行素数测试,由于在其算法中,有随机数的使用(选择一个随机的base),若一个MR伪素数 n n n,已知其在某一个强伪证 a a a(随机base)下表现出伪素性,那么我们可以逆向其算法过程,构造一个伪随机数生成器,使其通过MR素数测试。这通常是绕过BSPW必不可少的一部分。



    1.MR素数测试

    n n n是一个素数,且 n > 2 n>2 n>2,则 n − 1 n-1 n1为偶数, n − 1 n-1 n1可以表示为 2 s d 2^{s}d 2sd s s s d d d为正整数,且 d d d为奇数。对任意在 ( Z / n Z ) ∗ (Z/nZ)^{*} (Z/nZ)范围内的 a a a,必须满足以下两种形式的一种:

    a d ≡ 1   ( m o d   n ) 1 ◯ a 2 r d ≡ − 1   ( m o d   n ) 2 ◯ a^{d} \equiv1\ (mod \ n) \textcircled{1}\\ a^{2^{r}d} \equiv -1\ (mod \ n) \textcircled{2} ad1 (mod n)1a2rd1 (mod n)2

    其中 r r r是满足 , 0 ≤ r ≤ s − 1 ,0\leq r \leq s-1 ,0rs1的整数。
    由费马定理可得,对于一个素数 n n n,有
    a n − 1 ≡ 1   ( m o d   n ) a^{n-1} \equiv 1\ (mod \ n) an11 (mod n)

    不断对 a n − 1 a^{n-1} an1取平方根后,总会得到 1 1 1 − 1 -1 1。如果得到了 − 1 -1 1,意味着 2 ◯ \textcircled{2} 2成立。如果从未得到-1,那么这个过程已经取遍了所有 2 2 2的幂次,意味着 1 ◯ \textcircled{1} 1成立。

    Miller–Rabin素数测试基于上述原理的逆否,如果能找到一个 a a a,使得对于任意 0 ≤ r ≤ s − 1 0\leq r \leq s-1 0rs1以下两个式子均满足:

    a d ≢ 1   ( m o d   n ) a 2 r d ≢ − 1   ( m o d   n ) a^{d} \not\equiv1\ (mod \ n) \\ a^{2^{r}d} \not\equiv -1\ (mod \ n) ad1 (mod n)a2rd1 (mod n)
    那么 n n n是一个合数。这样的 a a a称为 n n n是合数的一个凭证(witness)。否则 a a a可能是一个证明 n n n是素数的“强伪证”(strong liar),即当 n n n确实是一个合数,但是对于当前选取的 a a a来说上述两个式子均不满足,这时我们认为 n n n是基于 a a a的大概率素数。

    详情参考维基百科:https://zh.wikipedia.org/wiki/%E7%B1%B3%E5%8B%92-%E6%8B%89%E5%AE%BE%E6%A3%80%E9%AA%8C

    2.pycryptodome 下MR素数测试源码分析

    2.1 相关版本

    • python 3.9.0
    • pycryptodome 3.18.0

    2.2 源码分析

    直接取自Crypto.Math.Primality下的miller_rabin_test方法:

    def miller_rabin_test(candidate, iterations, randfunc=None):
        """Perform a Miller-Rabin primality test on an integer.
    
        The test is specified in Section C.3.1 of `FIPS PUB 186-4`__.
    
        :Parameters:
          candidate : integer
            The number to test for primality.
          iterations : integer
            The maximum number of iterations to perform before
            declaring a candidate a probable prime.
          randfunc : callable
            An RNG function where bases are taken from.
    
        :Returns:
          ``Primality.COMPOSITE`` or ``Primality.PROBABLY_PRIME``.
    
        .. __: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
        """
    
        if not isinstance(candidate, Integer):
            candidate = Integer(candidate)
    
        if candidate in (1, 2, 3, 5):
            return PROBABLY_PRIME
    
        if candidate.is_even():
            return COMPOSITE
    
        one = Integer(1)
        minus_one = Integer(candidate - 1)
    
        if randfunc is None:
            randfunc = Random.new().read
    
        # Step 1 and 2
        m = Integer(minus_one)
        a = 0
        while m.is_even():
            m >>= 1
            a += 1
    
        # Skip step 3
    
        # Step 4
        for i in iter_range(iterations):
    
            # Step 4.1-2
            base = 1
            while base in (one, minus_one):
                base = Integer.random_range(min_inclusive=2,
                        max_inclusive=candidate - 2,
                        randfunc=randfunc)
                assert(2 <= base <= candidate - 2)
    
            # Step 4.3-4.4
            z = pow(base, m, candidate)
            if z in (one, minus_one):
                continue
    
            # Step 4.5
            for j in iter_range(1, a):
                z = pow(z, 2, candidate)
                if z == minus_one:
                    break
                if z == one:
                    return COMPOSITE
            else:
                return COMPOSITE
    
        # Step 5
        return PROBABLY_PRIME
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72

    三个参数分别是待测数、迭代次数、伪随机数生成器,同时注释也表明了是遵循nist规范(http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf)的一个实现。

    按照第1章的符号规范的话,其中的minus_one是 n − 1 n-1 n1,m是 d d d,a是 s s s,base是随机选择的 a a a

    整体流程是:

    • 1.先将 n − 1 n-1 n1表示为 2 s d 2^{s}d 2sd
    • 2.在指定迭代次数下,每次随机选取一个 a a a,满足 1 < a < n − 1 11<a<n1,分别测试 1 ◯ \textcircled{1} 1 2 ◯ \textcircled{2} 2的逆否。

    再来看一下默认迭代次数是如何选择的,在test_probable_prime方法中:

    在这里插入图片描述
    选择的依据是保证伪素数的概率是 1 0 − 30 10^{-30} 1030,按照220比特内,迭代30次,220-280比特内,迭代20次这样的方式预设迭代次数的值。

    3.已知MR伪素数以及强伪证 生成指定伪随机数生成器

    如何构造一个MR伪素数及强伪证不是本文的重点,可以自行参考相应论文(Fran ̧cois Arnault. Constructing Carmichael numbers which are strong pseudoprimes to several bases. Journal of Symbolic Computation, 20(2):151–161, 1995.)

    假设已知一个MR伪素数 n n n,一个强伪证 a a a,若要让第2章中的miller_rabin_test通过测试,我们需要确定其随机数的选择机理,同时将 a a a转换为一系列伪随机生成器的输出,同时逆向该伪随机数生成器,在调用miller_rabin_test的时候指定为该伪随机数生成器,或覆盖系统的os.urandom为该伪随机数生成器。

    3.1 base生成机理

    base的生成,调用的是Integer.random_range方法:

        @classmethod
        def random_range(cls, **kwargs):
            """Generate a random integer within a given internal.
    
            :Keywords:
              min_inclusive : integer
                The lower end of the interval (inclusive).
              max_inclusive : integer
                The higher end of the interval (inclusive).
              max_exclusive : integer
                The higher end of the interval (exclusive).
              randfunc : callable
                A function that returns a random byte string. The length of the
                byte string is passed as parameter. Optional.
                If not provided (or ``None``), randomness is read from the system RNG.
            :Returns:
                An Integer randomly taken in the given interval.
            """
    
            min_inclusive = kwargs.pop("min_inclusive", None)
            max_inclusive = kwargs.pop("max_inclusive", None)
            max_exclusive = kwargs.pop("max_exclusive", None)
            randfunc = kwargs.pop("randfunc", None)
    
            if kwargs:
                raise ValueError("Unknown keywords: " + str(kwargs.keys))
            if None not in (max_inclusive, max_exclusive):
                raise ValueError("max_inclusive and max_exclusive cannot be both"
                             " specified")
            if max_exclusive is not None:
                max_inclusive = max_exclusive - 1
            if None in (min_inclusive, max_inclusive):
                raise ValueError("Missing keyword to identify the interval")
    
            if randfunc is None:
                randfunc = Random.new().read
    
            norm_maximum = max_inclusive - min_inclusive
            bits_needed = cls(norm_maximum).size_in_bits()
    
            norm_candidate = -1
            while not 0 <= norm_candidate <= norm_maximum:
                norm_candidate = cls.random(
                                        max_bits=bits_needed,
                                        randfunc=randfunc
                                        )
            return norm_candidate + min_inclusive
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47

    在该方法中,将其分为了norm_candidate + min_inclusive(最小值保证),随后调用了cls.random获取norm_candidate

        @classmethod
        def random(cls, **kwargs):
            """Generate a random natural integer of a certain size.
    
            :Keywords:
              exact_bits : positive integer
                The length in bits of the resulting random Integer number.
                The number is guaranteed to fulfil the relation:
    
                    2^bits > result >= 2^(bits - 1)
    
              max_bits : positive integer
                The maximum length in bits of the resulting random Integer number.
                The number is guaranteed to fulfil the relation:
    
                    2^bits > result >=0
    
              randfunc : callable
                A function that returns a random byte string. The length of the
                byte string is passed as parameter. Optional.
                If not provided (or ``None``), randomness is read from the system RNG.
    
            :Return: a Integer object
            """
    
            exact_bits = kwargs.pop("exact_bits", None)
            max_bits = kwargs.pop("max_bits", None)
            randfunc = kwargs.pop("randfunc", None)
    
            if randfunc is None:
                randfunc = Random.new().read
    
            if exact_bits is None and max_bits is None:
                raise ValueError("Either 'exact_bits' or 'max_bits' must be specified")
    
            if exact_bits is not None and max_bits is not None:
                raise ValueError("'exact_bits' and 'max_bits' are mutually exclusive")
    
            bits = exact_bits or max_bits
            bytes_needed = ((bits - 1) // 8) + 1
            significant_bits_msb = 8 - (bytes_needed * 8 - bits)
            msb = bord(randfunc(1)[0])
            if exact_bits is not None:
                msb |= 1 << (significant_bits_msb - 1)
            msb &= (1 << significant_bits_msb) - 1
    
            return cls.from_bytes(bchr(msb) + randfunc(bytes_needed - 1))
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48

    流程如下:

    • 1.先产生一个随机字节,用于确定最高位。
    • 2.然后产生剩余的字节,一起组合成一个整数。

    3.2 转换为伪随机数生成器的输出

    我们使用python的random模块,其使用的是MT19937。若要逆向MT19937得到一个完全一致的伪随机数生成器,我们需要明确在整个调用伪随机数生成器期间,生成了哪些32位数。

    MT19937默认生成的随机数是32字节,若调用random.randbytes(1)生成一个字节,那么从源码可以看出:

    在这里插入图片描述
    是将一个32位的数右移24位。

    剩余的字节数,按每4个字节是一个完整的MT19937输出计算,好需要特殊处理末尾的几个字节,可能为0-3个字节。

    具体转换过程见代码:

    def get_mr_test_rand_list(p, base):
        def get_iter_count(x):
            x = Integer(x)
            mr_ranges = ((220, 30), (280, 20), (390, 15), (512, 10),
                         (620, 7), (740, 6), (890, 5), (1200, 4),
                         (1700, 3), (3700, 2))
    
            bit_size = x.size_in_bits()
            try:
                mr_iterations = list(filter(lambda x: bit_size < x[0],
                                            mr_ranges))[0][1]
            except IndexError:
                mr_iterations = 1
            return mr_iterations
    
        res_rands = []
        base_bytes = long_to_bytes(base - 2)
        iter_count = get_iter_count(p)
        for _ in range(iter_count):
            # randbytes(1)
            res_rands += [base_bytes[0] << 24]
            # randbytes(bytes_needed - 1)
            base_byte_size = len(base_bytes) - 1
            base_int_size_r = base_byte_size % 4
            for i in range(1, base_byte_size - base_int_size_r + 1, 4):
                res_rands += [base_bytes[i] + base_bytes[i + 1] * 2**8 +
                              base_bytes[i + 2] * 2**16 + base_bytes[i + 3] * 2**24]
            last_int = 0
            for i in range(0, base_int_size_r):
                last_int += base_bytes[base_byte_size - base_int_size_r + 1 + i] * 2**(i*8)
            res_rands += [last_int << ((4 - base_int_size_r) * 8)]
        return res_rands
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    3.3 生成指定伪随机数生成器

    参考之前逆向MT19937的文章:

    MT19937在连续输出存在截断的情况下利用z3符号执行推导内部状态以及等价种子: 点我前往

    只需要将get_mr_test_rand_list函数的输出,传入recover_seed,即可得到一个等价种子,从而得到一个指定的伪随机数生成器。

    3.4 测试

    给定MR伪素数及强伪证如下:

    p1 = 142445387161415482404826365418175962266689133006163
    p2 = 5840260873618034778597880982145214452934254453252643
    p3 = 14386984103302963722887462907235772188935602433622363
    n = p1 * p2 * p3

    a = 29

    在控制其伪随机数生成器后,成功通过MR素数测试。

    import random
    
    from Crypto.Math.Primality import *
    from Crypto import Random
    from Crypto.Math.Numbers import Integer
    from Crypto.Util.number import *
    
    def mr_test(x, randfunc=None):
        if randfunc is None:
            randfunc = Random.new().read
        x = Integer(x)
        mr_ranges = ((220, 30), (280, 20), (390, 15), (512, 10),
                     (620, 7), (740, 6), (890, 5), (1200, 4),
                     (1700, 3), (3700, 2))
        bit_size = x.size_in_bits()
        try:
            mr_iterations = list(filter(lambda x: bit_size < x[0],
                                            mr_ranges))[0][1]
        except IndexError:
            mr_iterations = 1
        if miller_rabin_test(x, mr_iterations,
                             randfunc=randfunc) == COMPOSITE:
            return COMPOSITE
        return PROBABLY_PRIME
    def get_mr_test_rand_list(p, base):
        def get_iter_count(x):
            x = Integer(x)
            mr_ranges = ((220, 30), (280, 20), (390, 15), (512, 10),
                         (620, 7), (740, 6), (890, 5), (1200, 4),
                         (1700, 3), (3700, 2))
    
            bit_size = x.size_in_bits()
            try:
                mr_iterations = list(filter(lambda x: bit_size < x[0],
                                            mr_ranges))[0][1]
            except IndexError:
                mr_iterations = 1
            return mr_iterations
    
        res_rands = []
        base_bytes = long_to_bytes(base - 2)
        iter_count = get_iter_count(p)
        for _ in range(iter_count):
            # randbytes(1)
            res_rands += [base_bytes[0] << 24]
            # randbytes(bytes_needed - 1)
            base_byte_size = len(base_bytes) - 1
            base_int_size_r = base_byte_size % 4
            for i in range(1, base_byte_size - base_int_size_r + 1, 4):
                res_rands += [base_bytes[i] + base_bytes[i + 1] * 2**8 +
                              base_bytes[i + 2] * 2**16 + base_bytes[i + 3] * 2**24]
            last_int = 0
            for i in range(0, base_int_size_r):
                last_int += base_bytes[base_byte_size - base_int_size_r + 1 + i] * 2**(i*8)
            res_rands += [last_int << ((4 - base_int_size_r) * 8)]
        return res_rands
    p1 = 142445387161415482404826365418175962266689133006163
    p2 = 5840260873618034778597880982145214452934254453252643
    p3 = 14386984103302963722887462907235772188935602433622363
    q = p1 * p2 * p3
    a = 29
    
    res_rands = get_mr_test_rand_list(q, a)
    
    #from find_seed_u import find_seed
    #seed_int = find_seed(res_rands)
    #print(hex(seed_int))
    seed_int = 0x200000026f63458da31799827b37b66b56258fad6d9f4abe83b656d75039aa466cebe4069b45a9aa58e93c783fc680f4418983609647fe2054326d4aa9a06188b0f2faf737d0ffc160b133e1e01f264e99d5a1fd7d4023be33f7ed49542176243de356cd0cfb685ba1453824b8dd32467785e2aa2ad361cc6e68483ef79d3975d154fa154fd80cba2b98ddb1db4192aef398aa2ca421148c954b11b9064a3965c16ad46d3fe517cb53fc6f6394778ef1ebb497ad74102f662d48dc193914129deb8d816dbdf2c805e20f411be3d853e069c37534b51662b4e4f7b2307b6b4559b38d2260f244250db221655a89c8133cf4f081d60373d8a0bf322addc33ea21633c989bf45d9303864c65d06408cbdf76040560944091e12f57a22122711f266ab939a29c7eaa3d046f1bd461761b70e5173b7e23f3f8be4f1e78b6867d79af97d8b4f173d7f5ca15e516041b949596f62cca47119a3889be1b75e21078885ed8fb011c4e310d4c90cb916908e9b797a631096de1c8ae1d8e7d8f7d42010c9acfa74585a413fd19112b5c4c0a4fa64b269767c3e1f183d405391ce52eb4cde09c24e75e152f02d46edea20ea6d4c4edb515f41559a88f0a15861725d5c8c93e8f09d2236c97ca1c318fe0142ccba897ddcee14b14eff773a34d8e2adfa61ef4e47203c3ec3ab6a93c704d02d8ce6061b7fc17ea56f05ab7ec08d9ede71299873c3a02f97191f80116ced41e1db53db1e4f9caa5a6a86bb35c69f83af511e65ee4531ea4e3091ddf437441553b567cc2166d99c9b172f9d41372d8e1cfffc28337f1cede9a7f9403989fa7e466050b907bfd4bbe6be77f6e6a795836f06b3d87f057ad49c0e3fb15ee7005782d7fa6ac59879e5b056216dff18f8dfd26a12b60fc6c1a7c389094b638524ea341332b1c04f7283a405518872fd7f7512379b8c06543da5a6bdf77ceabe2b0a1775b3d3ca2a525b3f0ef6566d9ccb531ed8c70ac5dd179c55b337102d5fe22855c9dd0eda78ae89d61ccf7138054eac9bfda4e1b433bd9a9d8b42bc6d80b6b9bafa84301df7c81349ba20b92de6a07d4fe6b147d881049d1786e4e2cfcb4271a9ef776de67a7a3b22c69cde2b4bb7bfff5b74a39e0840f49ffaf71c8ed7be06a2fd6ada15ed583bb11f43833328128aae86c293743cdfcdf5942683ed9a12faf2cf29106d8669fa635d9fc06a1ce26a8ea724ff69f1b8b2bc9966f25a964e5fc93ba15a5875d99b9121a28f3d617c1bacb17347ffa64bf0bbf09b82002fdd56c8d3f46c3ab36bf4e1786acb9a1d8780dd003cf3317deeb1a717bf2f39540d1931003958693ea2b3420eb11a6407969647a0512f710f4cbb6e80f7487a22eff221a8d92cafbc25984e07077320aa0a29a5ed86d976dffffde8f1329395ec395f73b12a53d1dee3325d630806a67a91fd884dd08aa9f4d7b3f9de82357819fd5387e2f3e2247945efb87302f8af8dcb194c26ecc68c2f0cfc85bb567e25357916f471c42aa90570a0a299412ee2e0eeee4a90959388c1aeb7f612ce5724f6a77f4ca4bb654698a7f05523873fe70b9537529147ff18d476f34e87121e22537358500acf037c276b4d39e58e5a1c017c572f1ed4d5d74d2c3ccda2006b55e31246bb4770906e5ab3f3ea3f2187a429c3438fc27ae570bf39fb576ad70448a5519e51bbc81a878429790eb8500ab63cf07b0913dca24d291d7dfa63662e415859eb013103f5d1bd5072940b917792100919a5c0fe9036e9a4f4e84ceeb2d3e3456cada86b7bdb01a624a4ad0200acdb98fac04e6437d1be8b4300021090e27bc5b8a82321d0fcc5993eceac5688ee7bef3b6840624951fbd503e98a113b91e1e330b7abe30b8dd5d78e69dd5a2c5cf94f6d20ce9a63bfd0e0d84359f246f4ae373c7d7c072d64edb02ee6720584a98858b37abeb8e3505dbedb681a20ed7260291520a0e3042aa2b7fcf130831ec37f21710fc2ff2a784ce2f1986610f7db78a1fabb59f1f2ae72e64deacf4c11e37358f7379beaed89121b305e1cf8bf8423d57603269ae10fb1b3c4f67f1c7ef1ce0f010b2e8a74fb1f597a303bfd3762f6658bd602949bd687a237e54fd3ff5639789aa17af0270cb4f2f1132bcab6ed8c917d7a977bb39cf66221b6519c23c148331d0d712acd48e028a066511892c516dcb0ec0ac8db98896b179b2bff0ec92715e8ec5ab5282d7f548ef3f706ae1ac6d354e6b8cf3b30962cd49b998af43fc49e17254b4ae4c0dabda4ee8360215a72486b209d974aa27079d23e31ebf8f0d62f7af43222bf9450f07e1ce8048be131aa55b8752782a563151a4f0c71658dc77cefcf0669a47746fdf46d8e98f5b56e59831dcee875f2038cd7bff3cedb121bca32f55b706e982c47bf010cb336a70e829df61a2e8ffe57b5d652f0495f132377842eb646c814d8bb7ab2da4985d7f5e98d31f882015e271c520b4b2f42c82af9c8cb98149a850540c03ad0a9bb8711e13cc6355df41ef9e9ad44adc5da4c5658e41e9d94e6f40210c04579feb5aaad2a435f184e8a3bcf243e1b97e45f87095c8642f67e63f9d5036f1122849e37e99f7e29958f5cbf47004fa9c3e5a29cc53da9e05116f0016dd8dcffd78bf3e656c092a4c87d4a9f81153dbe35fe33309dde407587bc1fc7e5aeef630c0856bd4566ccedb6b016bbacae97a24c07a3958259b4567a09a03bba4aa49e3de6469c5c31aaa2348fe52a83155d99b00523c530a73140e6cb0c77c9217f437e2e142c04bf443b62b4fda667fe5e7a75ced70db0387a7e95b4fae41c210d656fa25cda5eb2214041a2dca52aa9ed5692f441f6b4490c3f5ac9f88e2c8f78ff5e058dc09d5f21a926680cb196a778fc6be1b6337bdcdcff9be3f2899087ed58a978dbfca49c4425374f6fdd847908a0d29a596995aa334a0d7674aecbeaf410a92a8b6ce62d801caf7796eed699f304e13571dd7e3faf5138bb54c503365672f4bd2e77711681af1efceb5bc81b0dcbd8e05ba60f45a7b1824ec5db1c2e49b82db896a28c24f5cff6f8ce34e5c736ee4f2791494e4e9535517d4e00e844033e101a61bc201831830ab3063799f928a6309fe898f00696ac02dea38c7445b064e4c2a5994ae342d16b6bdd086991293423efe2ca2b5eed550f7fde1187964b904974bd036da4bcc3589e34c638c1e67341b78ea086282f651db24ff95031e97f22f88081d51c58b7d6160bbc49b4d458c2d50639ffef26e35773cc5243c7c48a8827c6bea813385b076048ef50d7a2c1f9ac605c298f93c78075abd920a25e2e54e23815f379ea23da984a90b472bebb908303dfdfd01685477fbee0814e0c8f2fdc50598c58a8e6b3a1c268dd8be35a31b9f2044bb347beb5abf4bc1453684567baf8f2766437a0711777ad04d1db165bdb52815583ab2d64713908094bf1ab993877a7b87ef5758e9bf2b4f17ec9bd0f127508669cc461762543b4f6ae34f9f0bc8988757ceefddb4774e3307e6677665205164522cdece2a79a80
    
    random.seed(seed_int)
    print(mr_test(q, randfunc=random.randbytes))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71

    ATFWUS 2023-11-20

  • 相关阅读:
    Java版工程行业管理系统源码-专业的工程管理软件-提供一站式服务
    gitlab 16.x - ERR unknown command ‘HELLO‘
    Apache Hive 数据掩码函数教程
    软件测试/测试开发丨接口自动化测试学习笔记,多环境自动切换
    DDD(领域驱动设计)
    机器学习__03__机器学习之线性回归
    Editplus同步阅览两个文件
    几何算法——介绍
    Leetcode 2269. 找到一个数字的 K 美丽值(滑动窗口)
    网络运维类面试非技术问题
  • 原文地址:https://blog.csdn.net/ATFWUS/article/details/134503132