• 卷积神经网络(CNN)天气识别


    前期工作

    1. 设置GPU(如果使用的是CPU可以忽略这步)

    我的环境:

    • 语言环境:Python3.6.5
    • 编译器:jupyter notebook
    • 深度学习环境:TensorFlow2.4.1
    import tensorflow as tf
    
    gpus = tf.config.list_physical_devices("GPU")
    
    if gpus:
        gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
        tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
        tf.config.set_visible_devices([gpu0],"GPU")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    2. 导入数据

    import matplotlib.pyplot as plt
    import os,PIL
    
    # 设置随机种子尽可能使结果可以重现
    import numpy as np
    np.random.seed(1)
    
    # 设置随机种子尽可能使结果可以重现
    import tensorflow as tf
    tf.random.set_seed(1)
    
    from tensorflow import keras
    from tensorflow.keras import layers,models
    
    import pathlib
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    data_dir = "weather_photos/"
    data_dir = pathlib.Path(data_dir)
    
    • 1
    • 2

    3. 查看数据

    数据集一共分为cloudyrainshinesunrise四类,分别存放于weather_photos文件夹中以各自名字命名的子文件夹中。

    image_count = len(list(data_dir.glob('*/*.jpg')))
    
    print("图片总数为:",image_count)
    
    • 1
    • 2
    • 3
    roses = list(data_dir.glob('sunrise/*.jpg'))
    PIL.Image.open(str(roses[0]))
    
    • 1
    • 2

    在这里插入图片描述

    二、数据预处理

    1. 加载数据

    使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

    batch_size = 32
    img_height = 180
    img_width = 180
    
    • 1
    • 2
    • 3
    train_ds = tf.keras.preprocessing.image_dataset_from_directory(
        data_dir,
        validation_split=0.2,
        subset="training",
        seed=123,
        image_size=(img_height, img_width),
        batch_size=batch_size)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    Found 1125 files belonging to 4 classes.
    Using 900 files for training.
    
    • 1
    • 2
    val_ds = tf.keras.preprocessing.image_dataset_from_directory(
        data_dir,
        validation_split=0.2,
        subset="validation",
        seed=123,
        image_size=(img_height, img_width),
        batch_size=batch_size)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    Found 1125 files belonging to 4 classes.
    Using 225 files for validation.
    
    • 1
    • 2

    我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

    class_names = train_ds.class_names
    print(class_names)
    
    • 1
    • 2
    ['cloudy', 'rain', 'shine', 'sunrise']
    
    • 1

    2. 可视化数据

    plt.figure(figsize=(20, 10))
    
    for images, labels in train_ds.take(1):
        for i in range(20):
            ax = plt.subplot(5, 10, i + 1)
    
            plt.imshow(images[i].numpy().astype("uint8"))
            plt.title(class_names[labels[i]])
            
            plt.axis("off")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    在这里插入图片描述

    3. 再次检查数据

    for image_batch, labels_batch in train_ds:
        print(image_batch.shape)
        print(labels_batch.shape)
        break
    
    • 1
    • 2
    • 3
    • 4
    (32, 180, 180, 3)
    (32,)
    
    • 1
    • 2
    • Image_batch是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。
    • Label_batch是形状(32,)的张量,这些标签对应32张图片

    4. 配置数据集

    AUTOTUNE = tf.data.AUTOTUNE
    
    train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
    val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
    
    • 1
    • 2
    • 3
    • 4

    三、构建CNN网络

    卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入,fashion_mnist 数据集中的图片,形状是 (28, 28, 1)即灰度图像。我们需要在声明第一层时将形状赋值给参数input_shape

    num_classes = 4
    
    model = models.Sequential([
        layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
        
        layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
        layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
        layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
        layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
        layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
        layers.Dropout(0.3),  
        
        layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
        layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
        layers.Dense(num_classes)               # 输出层,输出预期结果
    ])
    
    model.summary()  # 打印网络结构
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    rescaling (Rescaling)        (None, 180, 180, 3)       0         
    _________________________________________________________________
    conv2d (Conv2D)              (None, 178, 178, 16)      448       
    _________________________________________________________________
    average_pooling2d (AveragePo (None, 89, 89, 16)        0         
    _________________________________________________________________
    conv2d_1 (Conv2D)            (None, 87, 87, 32)        4640      
    _________________________________________________________________
    average_pooling2d_1 (Average (None, 43, 43, 32)        0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 41, 41, 64)        18496     
    _________________________________________________________________
    dropout (Dropout)            (None, 41, 41, 64)        0         
    _________________________________________________________________
    flatten (Flatten)            (None, 107584)            0         
    _________________________________________________________________
    dense (Dense)                (None, 128)               13770880  
    _________________________________________________________________
    dense_1 (Dense)              (None, 5)                 645       
    =================================================================
    Total params: 13,795,109
    Trainable params: 13,795,109
    Non-trainable params: 0
    _________________________________________________________________
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    四、编译

    • 在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
      • 损失函数(loss):用于衡量模型在训练期间的准确率。
      • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
      • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
    # 设置优化器
    opt = tf.keras.optimizers.Adam(learning_rate=0.001)
    model.compile(optimizer=opt,
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  metrics=['accuracy'])
    
    • 1
    • 2
    • 3
    • 4
    • 5

    五、训练模型

    epochs = 10
    history = model.fit(
      train_ds,
      validation_data=val_ds,
      epochs=epochs
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    Epoch 1/10
    29/29 [==============================] - 6s 58ms/step - loss: 1.5865 - accuracy: 0.4463 - val_loss: 0.5837 - val_accuracy: 0.7689
    Epoch 2/10
    29/29 [==============================] - 0s 12ms/step - loss: 0.5289 - accuracy: 0.8295 - val_loss: 0.5405 - val_accuracy: 0.8133
    Epoch 3/10
    29/29 [==============================] - 0s 12ms/step - loss: 0.2930 - accuracy: 0.8967 - val_loss: 0.5364 - val_accuracy: 0.8000
    Epoch 4/10
    29/29 [==============================] - 0s 12ms/step - loss: 0.2742 - accuracy: 0.9074 - val_loss: 0.4034 - val_accuracy: 0.8267
    Epoch 5/10
    29/29 [==============================] - 0s 11ms/step - loss: 0.1952 - accuracy: 0.9383 - val_loss: 0.3874 - val_accuracy: 0.8844
    Epoch 6/10
    29/29 [==============================] - 0s 11ms/step - loss: 0.1592 - accuracy: 0.9468 - val_loss: 0.3680 - val_accuracy: 0.8756
    Epoch 7/10
    29/29 [==============================] - 0s 12ms/step - loss: 0.0836 - accuracy: 0.9755 - val_loss: 0.3429 - val_accuracy: 0.8756
    Epoch 8/10
    29/29 [==============================] - 0s 12ms/step - loss: 0.0943 - accuracy: 0.9692 - val_loss: 0.3836 - val_accuracy: 0.9067
    Epoch 9/10
    29/29 [==============================] - 0s 12ms/step - loss: 0.0344 - accuracy: 0.9909 - val_loss: 0.3578 - val_accuracy: 0.9067
    Epoch 10/10
    29/29 [==============================] - 0s 11ms/step - loss: 0.0950 - accuracy: 0.9708 - val_loss: 0.4710 - val_accuracy: 0.8356
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    六、模型评估

    acc = history.history['accuracy']
    val_acc = history.history['val_accuracy']
    
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    epochs_range = range(epochs)
    
    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    plt.plot(epochs_range, acc, label='Training Accuracy')
    plt.plot(epochs_range, val_acc, label='Validation Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, loss, label='Training Loss')
    plt.plot(epochs_range, val_loss, label='Validation Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    在这里插入图片描述

  • 相关阅读:
    二维码智慧门牌管理系统升级解决方案:突破传统,实现质检与抽检的个性化配置
    Java#29(集合进阶2---双列集合)
    Redis集群概念与搭建
    【Try to Hack】Cobalt Strike(一)
    数据源使用错误导致MySQL事务失效分析
    FlinkSQL之Windowing TVF
    Ecal基于wifi下跨机通讯
    JDK 自带的服务发现框架 ServiceLoader 好用吗?
    腾讯云宝塔Linux安装Mysql5.7
    《痞子衡嵌入式半月刊》 第 58 期
  • 原文地址:https://blog.csdn.net/weixin_45822638/article/details/134496682