FaceBookReserch中SlowFast源码中检测框是用Detectron2进行目标检测,本文想实现用yolov8替换detectron2
首先,yolov8 支持有自定义库ultralytics(仅支持yolov8),安装对应库
pip install ultralytics
源码中slowfast/visualization.py 43行中
if cfg.DETECTION.ENABLE:
self.object_detector = Detectron2Predictor(cfg, gpu_id=self.gpu_id)
根据ultralytics文档进行定义
创建对应YOLOPredictor类(加入了检测框及其标签,具体见前一篇文章)
class YOLOPredictor:
def __init__(self, cfg, gpu_id=None):
# 加载预训练的 YOLOv8n 模型
self.model = YOLO('/root/autodl-tmp/data/runs/detect/train/weights/best.pt')
self.detect_names, _, _ = get_class_names(cfg.DEMO.Detect_File_Path, None, None)
def __call__(self, task):
"""
Return bounding boxes predictions as a tensor.
Args:
task (TaskInfo object): task object that contain
the necessary information for action prediction. (e.g. frames)
Returns:
task (TaskInfo object): the same task info object but filled with
prediction values (a tensor) and the corresponding boxes for
action detection task.
"""
# """得到预测置信度"""
# scores = outputs["instances"].scores[mask].tolist()
# """获取类别标签"""
# pred_labels = outputs["instances"].pred_classes[mask]
# pred_labels = pred_labels.tolist()
# """进行标签匹配"""
# for i in range(len(pred_labels)):
# pred_labels[i] = self.detect_names[pred_labels[i]]
# preds = [
# "[{:.4f}] {}".format(s, labels) for s, labels in zip(scores, pred_labels)
# ]
# """加入预测标签"""
# task.add_detect_preds(preds)
# task.add_bboxes(pred_boxes)
middle_frame = task.frames[len(task.frames) // 2]
outputs = self.model(middle_frame)
boxes = outputs[0].boxes
mask = boxes.conf >= 0.5
pred_boxes = boxes.xyxy[mask]
scores = boxes.conf[mask].tolist()
pred_labels = boxes.cls[mask].to(torch.int)
pred_labels = pred_labels.tolist()
for i in range(len(pred_labels)):
pred_labels[i] = self.detect_names[pred_labels[i]]
preds = [
"[{:.4f}] {}".format(s, labels) for s, labels in zip(scores, pred_labels)
]
"""加入预测标签"""
task.add_detect_preds(preds)
task.add_bboxes(pred_boxes)
return task