import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
# 读取Excel文件中的数据
df = pd.read_excel("新闻情感分析结果.xlsx")
# 获取主题和关键词列表
topics_and_keywords = [
[],
[]
]
# 构建节点
nodes = [keyword for topic_keywords in topics_and_keywords for keyword in topic_keywords]
# 创建图
G = nx.Graph()
# 添加节点
G.add_nodes_from(nodes)
# 计算节点之间的共现关系
for text in df["Combined Text"]:
text_keywords = set(text.split())
for i, topic_keywords in enumerate(topics_and_keywords):
for keyword in topic_keywords:
if keyword in text_keywords:
for other_keyword in topic_keywords:
if keyword != other_keyword and other_keyword in text_keywords:
G.add_edge(keyword, other_keyword)
# 计算圈(环)权重
for u, v, d in G.edges(data=True):
cooccurrence_count = G.degree(u) + G.degree(v) - 2
edge_weight = d.get("weight", 0) + 1 / cooccurrence_count
G[u][v]["weight"] = edge_weight
# 可视化图
pos = nx.spring_layout(G, seed=42) # 设置节点的布局
nx.draw_networkx_nodes(G, pos)
nx.draw_networkx_edges(G, pos)
nx.draw_networkx_labels(G, pos, font_size=8, font_color="black")
plt.show()