• 基于C++ 11的简单线程池实现


    只需要一个ThreadPool.h头文件即可:

    #ifndef THREAD_POOL_H
    #define THREAD_POOL_H
    
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    
    class ThreadPool {
    public:
        ThreadPool(size_t);
        template<class F, class... Args>
        auto enqueue(F&& f, Args&&... args) 
            -> std::future<typename std::result_of<F(Args...)>::type>;
        ~ThreadPool();
    private:
        // need to keep track of threads so we can join them
        std::vector< std::thread > workers;
        // the task queue
        std::queue< std::function<void()> > tasks;
        
        // synchronization
        std::mutex queue_mutex;
        std::condition_variable condition;
        bool stop;
    };
     
    // the constructor just launches some amount of workers
    inline ThreadPool::ThreadPool(size_t threads)
        :   stop(false)
    {
        for(size_t i = 0;i<threads;++i)
            workers.emplace_back(
                [this]
                {
                    for(;;)
                    {
                        std::function<void()> task;
    
                        {
                            std::unique_lock<std::mutex> lock(this->queue_mutex);
                            this->condition.wait(lock,
                                [this]{ return this->stop || !this->tasks.empty(); });
                            if(this->stop && this->tasks.empty())
                                return;
                            task = std::move(this->tasks.front());
                            this->tasks.pop();
                        }
    
                        task();
                    }
                }
            );
    }
    
    // add new work item to the pool
    template<class F, class... Args>
    auto ThreadPool::enqueue(F&& f, Args&&... args) 
        -> std::future<typename std::result_of<F(Args...)>::type>
    {
        using return_type = typename std::result_of<F(Args...)>::type;
    
        auto task = std::make_shared< std::packaged_task<return_type()> >(
                std::bind(std::forward<F>(f), std::forward<Args>(args)...)
            );
            
        std::future<return_type> res = task->get_future();
        {
            std::unique_lock<std::mutex> lock(queue_mutex);
    
            // don't allow enqueueing after stopping the pool
            if(stop)
                throw std::runtime_error("enqueue on stopped ThreadPool");
    
            tasks.emplace([task](){ (*task)(); });
        }
        condition.notify_one();
        return res;
    }
    
    // the destructor joins all threads
    inline ThreadPool::~ThreadPool()
    {
        {
            std::unique_lock<std::mutex> lock(queue_mutex);
            stop = true;
        }
        condition.notify_all();
        for(std::thread &worker: workers)
            worker.join();
    }
    
    #endif
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98

    测试main.cpp

    #include 
    #include 
    #include 
    #include "ThreadPool.h"
    
    int add(int a, int b) {
    	return a + b;
    }
    
    int multiply(int a, int b) {
    	return a * b;
    }
    
    int main() {
    	ThreadPool pool(4);
        std::vector< std::future<int> > results;
    
    	results.emplace_back(pool.enqueue(add, 1, 2)); // add tasks and execute
    	results.emplace_back(pool.enqueue(multiply, 3, 4));
    
    	for(auto && result: results) {
        	std::cout << result.get() << std::endl; // wait thread complete
        }
    	
    	return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    这个线程池的实现十分简单,缺陷是没有超时机制。
    源码来自Github,作者Jakob Progsch

  • 相关阅读:
    Linux安装和卸载JDK8详解
    hystrix 熔断器
    java-php-python-ssm在校大学生健康状况信息管理系统计算机毕业设计
    程序员是如何看待“祖传代码”的?
    MySQL日期函数
    AK F.*ing leetcode 流浪计划之最近公共祖先(倍增算法)
    SpringAOP(2)-spring源码详解(七)
    python数据分析与展示--Pandas库入门
    移动端实现HTML5 mp3录音踩坑指南:系统播放音量变小、一些机型录音断断续续 之 MediaRecorder和AudioWorklet的终极对决
    Leetcode之第299场周赛小记
  • 原文地址:https://blog.csdn.net/u014786409/article/details/134450887