• OpenMMlab导出yolov3模型并用onnxruntime和tensorrt推理


    导出onnx文件

    直接使用脚本

    import torch
    from mmdet.apis import init_detector, inference_detector
    
    
    config_file = './configs/yolo/yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py'
    checkpoint_file = 'yolov3_mobilenetv2_mstrain-416_300e_coco_20210718_010823-f68a07b3.pth'
    model = init_detector(config_file, checkpoint_file, device='cpu')  # or device='cuda:0'
    torch.onnx.export(model, (torch.zeros(1, 3, 416, 416),), "yolov3.onnx", opset_version=11)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    导出的onnx结构如下:
    在这里插入图片描述
    输出是包含三个不同层级检测头的输出。若需要合并检测结果,需要修改脚本如下:

    import torch
    from itertools import repeat
    from mmdet.apis import init_detector, inference_detector
    
    
    config_file = './configs/yolo/yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py'
    checkpoint_file = 'yolov3_mobilenetv2_mstrain-416_300e_coco_20210718_010823-f68a07b3.pth'
    model = init_detector(config_file, checkpoint_file, device='cpu')  # or device='cuda:0'
    
    
    class YOLOV3(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.model = init_detector(config_file, checkpoint_file, device='cpu')
            self.class_num = 80
            self.base_sizes = [[(116, 90), (156, 198), (373, 326)], 
                               [(30, 61), (62, 45), (59, 119)], 
                               [(10, 13), (16, 30), (33, 23)]]
            self.stride = [32, 16, 8]
            self.strides = [tuple(repeat(x, 2)) for x in self.stride]
            self.centers = [(x[0] / 2., x[1] / 2.) for x in self.strides]
            self.base_anchors=self.gen_base_anchors()
            
        def gen_base_anchors(self):
            multi_level_base_anchors = []
            for i, base_sizes_per_level in enumerate(self.base_sizes):
                center = self.centers[i]
                x_center, y_center = center
                base_anchors = []
                for base_size in base_sizes_per_level:
                    w, h = base_size
                    base_anchor = torch.Tensor([x_center - 0.5 * w, y_center - 0.5 * h, x_center + 0.5 * w, y_center + 0.5 * h])
                    base_anchors.append(base_anchor)
                base_anchors = torch.stack(base_anchors, dim=0)
                multi_level_base_anchors.append(base_anchors)
            return multi_level_base_anchors
                 
        def _meshgrid(self, x, y):
            xx = x.repeat(y.shape[0])
            yy = y.view(-1, 1).repeat(1, x.shape[0]).view(-1)
            return xx, yy
    
        def grid_priors(self, featmap_sizes):
            multi_level_anchors = []
            for i in range(len(featmap_sizes)):
                base_anchors = self.base_anchors[i]
                feat_h, feat_w = featmap_sizes[i]
                stride_w, stride_h = self.strides[i]
                shift_x = torch.arange(0, feat_w) * stride_w
                shift_y = torch.arange(0, feat_h) * stride_h
                shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
                shifts = torch.stack([shift_xx, shift_yy, shift_xx, shift_yy], dim=-1)
                anchors = base_anchors[None, :, :] + shifts[:, None, :]
                anchors = anchors.view(-1, 4)           
                multi_level_anchors.append(anchors)
            return multi_level_anchors
        
        def decode(self, bboxes, pred_bboxes, stride):
            xy_centers = (bboxes[..., :2] + bboxes[..., 2:]) * 0.5 + (pred_bboxes[..., :2] - 0.5) * stride
            whs = (bboxes[..., 2:] - bboxes[..., :2]) * 0.5 * pred_bboxes[..., 2:].exp()
            decoded_bboxes = torch.stack((xy_centers[..., 0] - whs[..., 0], xy_centers[..., 1] - whs[..., 1], 
                                          xy_centers[..., 0] + whs[..., 0], xy_centers[..., 1] + whs[..., 1]), dim=-1)
            return decoded_bboxes
            
        def forward(self, x):
            x = self.model.backbone(x)
            x = self.model.neck(x)
            pred_maps = self.model.bbox_head(x)
            
            flatten_preds = []
            flatten_strides = []
            for pred, stride in zip(pred_maps[0], self.stride):
                pred = pred.permute(0, 2, 3, 1).reshape(1, -1, 5+self.class_num)
                pred[..., :2] = pred[..., :2].sigmoid()
                flatten_preds.append(pred)
                flatten_strides.append(pred.new_tensor(stride).expand(pred.size(1)))
                
            flatten_preds = torch.cat(flatten_preds, dim=1)
            flatten_bbox_preds = flatten_preds[..., :4]  
            flatten_objectness = flatten_preds[..., 4].sigmoid()
            flatten_preds[..., 4] = flatten_objectness
            flatten_cls_scores = flatten_preds[..., 5:].sigmoid()
            flatten_preds[..., 5:] = flatten_cls_scores
    
            featmap_sizes = [pred_map.shape[-2:] for pred_map in pred_maps[0]]
            mlvl_anchors = self.grid_priors(featmap_sizes)
            flatten_anchors = torch.cat(mlvl_anchors)
            flatten_strides = torch.cat(flatten_strides)
            
            flatten_bboxes = self.decode(flatten_anchors, flatten_bbox_preds, flatten_strides.unsqueeze(-1))
            flatten_preds[..., :4] = flatten_bboxes
            
            return flatten_preds
        
        
    model = YOLOV3().eval()
    input = torch.zeros(1, 3, 416, 416, device='cpu')
    torch.onnx.export(model, input, "out.onnx", opset_version=11)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98

    导出的onnx结构如下:
    在这里插入图片描述
    安装mmdeploy的话,可以通过下面脚本导出onnx模型

    from mmdeploy.apis import torch2onnx
    from mmdeploy.backend.sdk.export_info import export2SDK
    
    
    img = 'bus.jpg'
    work_dir = './work_dir/onnx/yolov3'
    save_file = './end2end.onnx'
    deploy_cfg = 'mmdeploy/configs/mmdet/detection/detection_onnxruntime_dynamic.py'
    model_cfg = 'mmdetection/configs/yolo/yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py'
    model_checkpoint = 'checkpoints/yolov3_mobilenetv2_mstrain-416_300e_coco_20210718_010823-f68a07b3.pth'
    device = 'cpu'
    
    # 1. convert model to onnx
    torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)
    
    # 2. extract pipeline info for sdk use (dump-info)
    export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    onnx模型的结构如下:
    在这里插入图片描述

    onnxruntime推理

    手动导出的onnx模型使用onnxruntime推理:

    import cv2
    import numpy as np
    import onnxruntime
    
    
    CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
            'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
            'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
            'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
            'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
            'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
            'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
            'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
            'hair drier', 'toothbrush'] #coco80类别       
    use_letterbox = True
    input_shape = (416, 416)      
    
    
    def nms(dets, thresh):
        x1 = dets[:, 0]
        y1 = dets[:, 1]
        x2 = dets[:, 2]
        y2 = dets[:, 3]
        areas = (y2 - y1 + 1) * (x2 - x1 + 1)
        scores = dets[:, 4]
        keep = []
        index = scores.argsort()[::-1] 
    
        while index.size > 0:
            i = index[0]
            keep.append(i)
            x11 = np.maximum(x1[i], x1[index[1:]]) 
            y11 = np.maximum(y1[i], y1[index[1:]])
            x22 = np.minimum(x2[i], x2[index[1:]])
            y22 = np.minimum(y2[i], y2[index[1:]])
            w = np.maximum(0, x22 - x11 + 1)                              
            h = np.maximum(0, y22 - y11 + 1) 
            overlaps = w * h
            ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
            idx = np.where(ious <= thresh)[0]
            index = index[idx + 1]
        return keep
    
    
    def filter_box(org_box, conf_thres, iou_thres): #过滤掉无用的框
        org_box = np.squeeze(org_box)
        conf = org_box[..., 4] > conf_thres
        box = org_box[conf == True]
    
        cls_cinf = box[..., 5:]
        cls = []
        for i in range(len(cls_cinf)):
            cls.append(int(np.argmax(cls_cinf[i])))
        all_cls = list(set(cls))    
         
        output = []
        for i in range(len(all_cls)):
            curr_cls = all_cls[i]
            curr_cls_box = []
            curr_out_box = []
            for j in range(len(cls)):
                if cls[j] == curr_cls:
                    box[j][4] *= cls_cinf[j][curr_cls]
                    box[j][5] = curr_cls
                    curr_cls_box.append(box[j][:6])
            curr_cls_box = np.array(curr_cls_box)
            curr_out_box = nms(curr_cls_box,iou_thres)
            for k in curr_out_box:
                output.append(curr_cls_box[k])
        output = np.array(output) #(4, 6)
        return output
    
    
    def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
        # Resize and pad image while meeting stride-multiple constraints
        shape = im.shape[:2]  # current shape [height, width]
    
        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        
        # Compute padding
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
        dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
        
        if shape[::-1] != new_unpad:  # resize
            im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
        im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
        return im
    
    
    def scale_boxes(input_shape, boxes, shape):
        # Rescale boxes (xyxy) from input_shape to shape
        gain = min(input_shape[0] / shape[0], input_shape[1] / shape[1])  # gain  = old / new
        pad = (input_shape[1] - shape[1] * gain) / 2, (input_shape[0] - shape[0] * gain) / 2  # wh padding
    
        boxes[..., [0, 2]] -= pad[0]  # x padding
        boxes[..., [1, 3]] -= pad[1]  # y padding
        boxes[..., :4] /= gain
        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
        return boxes
    
    
    def draw(image, box_data):
        box_data = scale_boxes(input_shape, box_data, image.shape)
        boxes = box_data[...,:4].astype(np.int32) 
        scores = box_data[...,4]
        classes = box_data[...,5].astype(np.int32)
       
        for box, score, cl in zip(boxes, scores, classes):
            top, left, right, bottom = box
            print('class: {}, score: {}, coordinate: [{}, {}, {}, {}]'.format(CLASSES[cl], score, top, left, right, bottom))
            cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)
            cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)
    
    
    if __name__=="__main__":
        img = cv2.imread('bus.jpg')
        if use_letterbox:
            input = letterbox(img, input_shape)
        else:
            input = cv2.resize(img, input_shape)
        input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
        input[0,:] = (input[0,:] - 123.675) / 58.395   
        input[1,:] = (input[1,:] - 116.28) / 57.12
        input[2,:] = (input[2,:] - 103.53) / 57.375
        input = np.expand_dims(input, axis=0)
        
        onnx_session = onnxruntime.InferenceSession('yolov3.onnx', providers=['CPUExecutionProvider'])
            
        input_name=[]
        for node in onnx_session.get_inputs():
            input_name.append(node.name)
    
        output_name=[]
        for node in onnx_session.get_outputs():
            output_name.append(node.name)
    
        input_feed={}
        for name in input_name:
            input_feed[name] = input
            
        pred = onnx_session.run(None, input_feed)
        
        outbox = filter_box(pred, 0.5, 0.5)
        draw(img, outbox)
        cv2.imwrite('res.jpg', img)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149

    mmdeploy导出的onnx模型使用onnxruntime推理:

    import cv2
    import numpy as np
    import onnxruntime
    
    
    CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
            'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
            'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
            'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
            'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
            'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
            'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
            'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
            'hair drier', 'toothbrush'] #coco80类别       
    use_letterbox = True
    input_shape = (416, 416)      
    
    
    def filter_box(org_box, conf_thres): #删除置信度小于conf_thres的BOX
        flag = org_box[0][..., 4] > conf_thres
        box = org_box[0][flag == True] 
        cls = org_box[1][flag == True].reshape(-1, 1) 
        output = np.concatenate((box, cls), axis=1)  
        return output
    
    
    def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
        # Resize and pad image while meeting stride-multiple constraints
        shape = im.shape[:2]  # current shape [height, width]
    
        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        
        # Compute padding
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
        dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
        
        if shape[::-1] != new_unpad:  # resize
            im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
        im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
        return im
    
    
    def scale_boxes(input_shape, boxes, shape):
        # Rescale boxes (xyxy) from input_shape to shape
        gain = min(input_shape[0] / shape[0], input_shape[1] / shape[1])  # gain  = old / new
        pad = (input_shape[1] - shape[1] * gain) / 2, (input_shape[0] - shape[0] * gain) / 2  # wh padding
    
        boxes[..., [0, 2]] -= pad[0]  # x padding
        boxes[..., [1, 3]] -= pad[1]  # y padding
        boxes[..., :4] /= gain
        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
        return boxes
    
    
    def draw(image, box_data):
        box_data = scale_boxes(input_shape, box_data, image.shape)
        boxes = box_data[...,:4].astype(np.int32) 
        scores = box_data[...,4]
        classes = box_data[...,5].astype(np.int32)
       
        for box, score, cl in zip(boxes, scores, classes):
            top, left, right, bottom = box
            print('class: {}, score: {}, coordinate: [{}, {}, {}, {}]'.format(CLASSES[cl], score, top, left, right, bottom))
            cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)
            cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)
    
    
    if __name__=="__main__":
        img = cv2.imread('bus.jpg')
        if use_letterbox:
            input = letterbox(img, input_shape)
        else:
            input = cv2.resize(img, input_shape)
        input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
        input[0,:] = (input[0,:] - 123.675) / 58.395   
        input[1,:] = (input[1,:] - 116.28) / 57.12
        input[2,:] = (input[2,:] - 103.53) / 57.375
        input = np.expand_dims(input, axis=0)
        
        onnx_session = onnxruntime.InferenceSession('../work_dir/onnx/yolov3/end2end.onnx', providers=['CPUExecutionProvider'])
            
        input_name=[]
        for node in onnx_session.get_inputs():
            input_name.append(node.name)
    
        output_name=[]
        for node in onnx_session.get_outputs():
            output_name.append(node.name)
    
        input_feed={}
        for name in input_name:
            input_feed[name] = input
            
        pred = onnx_session.run(None, input_feed)
        
        outbox = filter_box(pred, 0.5)
        draw(img, outbox)
        cv2.imwrite('res.jpg', img)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102

    直接使用mmdeploy的api推理:

    from mmdeploy.apis import inference_model
    
    
    model_cfg = 'mmdetection/configs/yolo/yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py'
    deploy_cfg = 'mmdeploy/configs/mmdet/detection/detection_onnxruntime_dynamic.py'
    img = 'bus.jpg'
    backend_files = ['work_dir/onnx/yolov3/end2end.onnx']
    device = 'cpu'
    
    result = inference_model(model_cfg, deploy_cfg, backend_files, img, device)
    print(result)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    或者

    from mmdeploy_runtime import Detector
    import cv2
    
    
    # 读取图片
    img = cv2.imread('bus.jpg')
    
    # 创建检测器
    detector = Detector(model_path='work_dir/onnx/yolov3', device_name='cpu')
    
    # 执行推理
    bboxes, labels, _ = detector(img)
    # 使用阈值过滤推理结果,并绘制到原图中
    indices = [i for i in range(len(bboxes))]
    for index, bbox, label_id in zip(indices, bboxes, labels):
      [left, top, right, bottom], score = bbox[0:4].astype(int),  bbox[4]
      if score < 0.3:
          continue
      cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))
    cv2.imwrite('output_detection.png', img)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    导出engine文件

    这里通过trtexec转换onnx文件,LZ的版本是TensorRT-8.2.1.8。

    ./trtexec.exe --onnx=yolov3.onnx --saveEngine=yolov3.engine --workspace=20480
    
    • 1

    tensorrt推理

    手动导出的模型使用tensorrt推理:

    import cv2
    import numpy as np
    import tensorrt as trt
    import pycuda.autoinit 
    import pycuda.driver as cuda  
    
    
    CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
            'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
            'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
            'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
            'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
            'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
            'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
            'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
            'hair drier', 'toothbrush'] #coco80类别       
    use_letterbox = True
    input_shape = (416, 416)      
    
    
    def nms(dets, thresh):
        x1 = dets[:, 0]
        y1 = dets[:, 1]
        x2 = dets[:, 2]
        y2 = dets[:, 3]
        areas = (y2 - y1 + 1) * (x2 - x1 + 1)
        scores = dets[:, 4]
        keep = []
        index = scores.argsort()[::-1] 
    
        while index.size > 0:
            i = index[0]
            keep.append(i)
            x11 = np.maximum(x1[i], x1[index[1:]]) 
            y11 = np.maximum(y1[i], y1[index[1:]])
            x22 = np.minimum(x2[i], x2[index[1:]])
            y22 = np.minimum(y2[i], y2[index[1:]])
            w = np.maximum(0, x22 - x11 + 1)                              
            h = np.maximum(0, y22 - y11 + 1) 
            overlaps = w * h
            ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
            idx = np.where(ious <= thresh)[0]
            index = index[idx + 1]
        return keep
    
    
    def filter_box(org_box, conf_thres, iou_thres): #过滤掉无用的框
        org_box = np.squeeze(org_box)
        conf = org_box[..., 4] > conf_thres
        box = org_box[conf == True]
    
        cls_cinf = box[..., 5:]
        cls = []
        for i in range(len(cls_cinf)):
            cls.append(int(np.argmax(cls_cinf[i])))
        all_cls = list(set(cls))    
         
        output = []
        for i in range(len(all_cls)):
            curr_cls = all_cls[i]
            curr_cls_box = []
            curr_out_box = []
            for j in range(len(cls)):
                if cls[j] == curr_cls:
                    box[j][4] *= cls_cinf[j][curr_cls]
                    box[j][5] = curr_cls
                    curr_cls_box.append(box[j][:6])
            curr_cls_box = np.array(curr_cls_box)
            curr_out_box = nms(curr_cls_box,iou_thres)
            for k in curr_out_box:
                output.append(curr_cls_box[k])
        output = np.array(output) #(4, 6)
        return output
    
    
    def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
        # Resize and pad image while meeting stride-multiple constraints
        shape = im.shape[:2]  # current shape [height, width]
    
        # Scale ratio (new / old)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        
        # Compute padding
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
        dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
        top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
        left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
        
        if shape[::-1] != new_unpad:  # resize
            im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
        im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
        return im
    
    
    def scale_boxes(input_shape, boxes, shape):
        # Rescale boxes (xyxy) from input_shape to shape
        gain = min(input_shape[0] / shape[0], input_shape[1] / shape[1])  # gain  = old / new
        pad = (input_shape[1] - shape[1] * gain) / 2, (input_shape[0] - shape[0] * gain) / 2  # wh padding
    
        boxes[..., [0, 2]] -= pad[0]  # x padding
        boxes[..., [1, 3]] -= pad[1]  # y padding
        boxes[..., :4] /= gain
        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2
        return boxes
    
    
    def draw(image, box_data):
        box_data = scale_boxes(input_shape, box_data, image.shape)
        boxes = box_data[...,:4].astype(np.int32) 
        scores = box_data[...,4]
        classes = box_data[...,5].astype(np.int32)
       
        for box, score, cl in zip(boxes, scores, classes):
            top, left, right, bottom = box
            print('class: {}, score: {}, coordinate: [{}, {}, {}, {}]'.format(CLASSES[cl], score, top, left, right, bottom))
            cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)
            cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)
    
    
    if __name__=="__main__":
        logger = trt.Logger(trt.Logger.WARNING)
        with open("yolov3.engine", "rb") as f, trt.Runtime(logger) as runtime:
            engine = runtime.deserialize_cuda_engine(f.read())
        context = engine.create_execution_context()
        h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)
        h_output = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)
        d_input = cuda.mem_alloc(h_input.nbytes)
        d_output = cuda.mem_alloc(h_output.nbytes)
        stream = cuda.Stream()
        
        img = cv2.imread('bus.jpg')
        if use_letterbox:
            input = letterbox(img, input_shape)
        else:
            input = cv2.resize(img, input_shape)
        input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
        input[0,:] = (input[0,:] - 123.675) / 58.395   
        input[1,:] = (input[1,:] - 116.28) / 57.12
        input[2,:] = (input[2,:] - 103.53) / 57.375
        input = np.expand_dims(input, axis=0) 
        
        np.copyto(h_input, input.ravel())
    
        with engine.create_execution_context() as context:
            cuda.memcpy_htod_async(d_input, h_input, stream)
            context.execute_async_v2(bindings=[int(d_input), int(d_output)], stream_handle=stream.handle)
            cuda.memcpy_dtoh_async(h_output, d_output, stream)
            stream.synchronize()  
            pred = h_output.reshape(1, 10647, 85) 
            outbox = filter_box(pred, 0.5, 0.5)
            draw(img, outbox)
            cv2.imwrite('res.jpg', img)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153

    使用mmdeploy的api推理:

    from mmdeploy.apis import inference_model
    
    
    model_cfg ='mmdetection/configs/yolo/yolov3_mobilenetv2_8xb24-ms-416-300e_coco.py'
    deploy_cfg = 'mmdeploy/configs/mmdet/detection/detection_tensorrt_static-320x320.py'
    img = 'bus.jpg'
    backend_files = ['work_dir/trt/yolov3/end2end.engine']
    device = 'cuda'
    
    result = inference_model(model_cfg, deploy_cfg, backend_files, img, device)
    print(result)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    或者

    from mmdeploy_runtime import Detector
    import cv2
    
    
    # 读取图片
    img = cv2.imread('bus.jpg')
    
    # 创建检测器
    detector = Detector(model_path='work_dir/trt/yolox', device_name='cuda')
    
    # 执行推理
    bboxes, labels, _ = detector(img)
    # 使用阈值过滤推理结果,并绘制到原图中
    indices = [i for i in range(len(bboxes))]
    for index, bbox, label_id in zip(indices, bboxes, labels):
      [left, top, right, bottom], score = bbox[0:4].astype(int),  bbox[4]
      if score < 0.3:
          continue
      cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))
    cv2.imwrite('output_detection.png', img)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  • 相关阅读:
    简历没东西写?看看这份价值55亿的“网约车”项目资料,丰富你的简历
    Python入门笔记
    python接口自动化之ConfigParser配置文件的使用
    ExcelPatternTool: Excel表格-数据库互导工具
    Blender里复制对象动画
    Int数据取byte,Byte数据取bit
    制药机械行业供应链协同管理系统:全链路数字化覆盖,实现产业供应链可视化
    Spark开源REST服务——Apache Livy(Spark 客户端)
    理解交叉熵(Cross Entropy)
    Python-pptx教程之二操作已有PPT模板文件
  • 原文地址:https://blog.csdn.net/taifyang/article/details/134342616