该滤波器会计算每个点周围一定半径内点的密度,并将密度低于一个阈值的点移除。
- template <typename PointT> void
- pcl::RadiusOutlierRemoval
::applyFilterIndices (std::vector<int> &indices) - {
- //首先检查search_radius_是否为0,如果是,则输出错误信息,并清空indices和removed_indices_,然后返回。
- if (search_radius_ == 0.0)
- {
- PCL_ERROR ("[pcl::%s::applyFilter] No radius defined!\n", getClassName ().c_str ());
- indices.clear ();
- removed_indices_->clear ();
- return;
- }
-
- //如果searcher_为空指针,则根据输入的点云是否有组织结构来选择初始化OrganizedNeighbor或者KdTree的搜索类,并将输入点云的指针传递给搜索类。
- // Initialize the search class
- if (!searcher_)
- {
- if (input_->isOrganized ())
- searcher_.reset (new pcl::search::OrganizedNeighbor
()); - else
- searcher_.reset (new pcl::search::KdTree
(false)); - }
- searcher_->setInputCloud (input_);
-
- // The arrays to be used
- std::vector<int> nn_indices (indices_->size ());
- std::vector<float> nn_dists (indices_->size ());
- indices.resize (indices_->size ());
- removed_indices_->resize (indices_->size ());
- int oii = 0, rii = 0; // oii = output indices iterator, rii = removed indices iterator
-
- // If the data is dense => use nearest-k search
- if (input_->is_dense)
- {
- // Note: k includes the query point, so is always at least 1
- int mean_k = min_pts_radius_ + 1;
- double nn_dists_max = search_radius_ * search_radius_;
-
- for (std::vector<int>::const_iterator it = indices_->begin (); it != indices_->end (); ++it)
- {
- //采用最近K邻搜索。对于每个输入点,在搜索半径内找到最近的K个点,然后根据条件判断是否将该点加入输出索引或移除索引。
- // Perform the nearest-k search
- int k = searcher_->nearestKSearch (*it, mean_k, nn_indices, nn_dists);
-
- // Check the number of neighbors
- // Note: nn_dists is sorted, so check the last item
- bool chk_neighbors = true;
- if (k == mean_k)
- {
- if (negative_)
- {
- chk_neighbors = false;
- if (nn_dists_max < nn_dists[k-1])
- {
- chk_neighbors = true;
- }
- }
- else
- {
- chk_neighbors = true;
- if (nn_dists_max < nn_dists[k-1])
- {
- chk_neighbors = false;
- }
- }
- }
- else
- {
- if (negative_)
- chk_neighbors = true;
- else
- chk_neighbors = false;
- }
-
- // Points having too few neighbors are outliers and are passed to removed indices
- // Unless negative was set, then it's the opposite condition
- if (!chk_neighbors)
- {
- if (extract_removed_indices_)
- (*removed_indices_)[rii++] = *it;
- continue;
- }
-
- // Otherwise it was a normal point for output (inlier)
- indices[oii++] = *it;
- }
- }
- // NaN or Inf values could exist => use radius search
- else
- {
- for (std::vector<int>::const_iterator it = indices_->begin (); it != indices_->end (); ++it)
- {
- //采用半径搜索。对于每个输入点,在搜索半径内找到点,然后根据条件判断是否将该点加入输出索引或移除索引。最后,调整输出数组的大小。
- // Perform the radius search
- // Note: k includes the query point, so is always at least 1
- int k = searcher_->radiusSearch (*it, search_radius_, nn_indices, nn_dists);
-
- // Points having too few neighbors are outliers and are passed to removed indices
- // Unless negative was set, then it's the opposite condition
- if ((!negative_ && k <= min_pts_radius_) || (negative_ && k > min_pts_radius_))
- {
- if (extract_removed_indices_)
- (*removed_indices_)[rii++] = *it;
- continue;
- }
-
- // Otherwise it was a normal point for output (inlier)
- indices[oii++] = *it;
- }
- }
-
- // Resize the output arrays
- indices.resize (oii);
- removed_indices_->resize (rii);
- }