• 竞赛 题目:基于python的验证码识别 - 机器视觉 验证码识别


    0 前言

    🔥 优质竞赛项目系列,今天要分享的是

    基于python的验证码识别

    该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

    🧿 更多资料, 项目分享:

    https://gitee.com/dancheng-senior/postgraduate

    1 项目简介

    在python爬虫爬取某些网站的验证码的时候可能会遇到验证码识别的问题,现在的验证码大多分为四类:

    • 1、计算验证码

    • 2、滑块验证码

    • 3、识图验证码

    • 4、语音验证码

    学长这主要写的就是识图验证码,识别的是简单的验证码,要想让识别率更高,识别的更加准确就需要花很多的精力去训练自己的字体库。

    2 验证码识别步骤

    1、灰度处理

    2、二值化

    3、去除边框(如果有的话)

    4、降噪

    5、切割字符或者倾斜度矫正

    6、训练字体库
    7、识别

    这6个步骤中前三个步骤是基本的,4或者5可根据实际情况选择是否需要,并不一定切割验证码,识别率就会上升很多有时候还会下降

    这篇博客不涉及训练字体库的内容,请自行搜索。同样也不讲解基础的语法。

    用到的几个主要的python库: Pillow(python图像处理库)、OpenCV(高级图像处理库)、pytesseract(识别库)

    2.1 灰度处理&二值化

    灰度处理,就是把彩色的验证码图片转为灰色的图片。

    二值化,是将图片处理为只有黑白两色的图片,利于后面的图像处理和识别

    在OpenCV中有现成的方法可以进行灰度处理和二值化,处理后的效果:

    在这里插入图片描述

    # 自适应阀值二值化
    def _get_dynamic_binary_image(filedir, img_name):
      filename =   './out_img/' + img_name.split('.')[0] + '-binary.jpg'
      img_name = filedir + '/' + img_name
      print('.....' + img_name)
      im = cv2.imread(img_name)
      im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) #灰值化
      # 二值化
      th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
      cv2.imwrite(filename,th1)
      return th1
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    2.2 去除边框

    如果验证码有边框,那我们就需要去除边框,去除边框就是遍历像素点,找到四个边框上的所有点,把他们都改为白色,我这里边框是两个像素宽

    注意:在用OpenCV时,图片的矩阵点是反的,就是长和宽是颠倒的

    代码:

    # 去除边框
    def clear_border(img,img_name):
      filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
      h, w = img.shape[:2]
      for y in range(0, w):
        for x in range(0, h):
          if y < 2 or y > w - 2:
            img[x, y] = 255
          if x < 2 or x > h -2:
            img[x, y] = 255
    
      cv2.imwrite(filename,img)
      return img
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    效果

    在这里插入图片描述

    2.3 图像降噪

    降噪是验证码处理中比较重要的一个步骤,我这里使用了点降噪和线降噪

    在这里插入图片描述
    线降噪的思路就是检测这个点相邻的四个点(图中标出的绿色点),判断这四个点中是白点的个数,如果有两个以上的白色像素点,那么就认为这个点是白色的,从而去除整个干扰线,但是这种方法是有限度的,如果干扰线特别粗就没有办法去除,只能去除细的干扰线

    # 干扰线降噪
    def interference_line(img, img_name):
      filename =  './out_img/' + img_name.split('.')[0] + '-interferenceline.jpg'
      h, w = img.shape[:2]
      # !!!opencv矩阵点是反的
      # img[1,2] 1:图片的高度,2:图片的宽度
      for y in range(1, w - 1):
        for x in range(1, h - 1):
          count = 0
          if img[x, y - 1] > 245:
            count = count + 1
          if img[x, y + 1] > 245:
            count = count + 1
          if img[x - 1, y] > 245:
            count = count + 1
          if img[x + 1, y] > 245:
            count = count + 1
          if count > 2:
            img[x, y] = 255
      cv2.imwrite(filename,img)
      return img
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    点降噪的思路和线降噪的差不多,只是会针对不同的位置检测的点不一样,注释写的很清楚了

    # 点降噪
    def interference_point(img,img_name, x = 0, y = 0):
        """
        9邻域框,以当前点为中心的田字框,黑点个数
        :param x:
        :param y:
        :return:
        """
        filename =  './out_img/' + img_name.split('.')[0] + '-interferencePoint.jpg'
        # todo 判断图片的长宽度下限
        cur_pixel = img[x,y]# 当前像素点的值
        height,width = img.shape[:2]
    
        for y in range(0, width - 1):
          for x in range(0, height - 1):
            if y == 0:  # 第一行
                if x == 0:  # 左上顶点,4邻域
                    # 中心点旁边3个点
                    sum = int(cur_pixel) \
                          + int(img[x, y + 1]) \
                          + int(img[x + 1, y]) \
                          + int(img[x + 1, y + 1])
                    if sum <= 2 * 245:
                      img[x, y] = 0
                elif x == height - 1:  # 右上顶点
                    sum = int(cur_pixel) \
                          + int(img[x, y + 1]) \
                          + int(img[x - 1, y]) \
                          + int(img[x - 1, y + 1])
                    if sum <= 2 * 245:
                      img[x, y] = 0
                else:  # 最上非顶点,6邻域
                    sum = int(img[x - 1, y]) \
                          + int(img[x - 1, y + 1]) \
                          + int(cur_pixel) \
                          + int(img[x, y + 1]) \
                          + int(img[x + 1, y]) \
                          + int(img[x + 1, y + 1])
                    if sum <= 3 * 245:
                      img[x, y] = 0
            elif y == width - 1:  # 最下面一行
                if x == 0:  # 左下顶点
                    # 中心点旁边3个点
                    sum = int(cur_pixel) \
                          + int(img[x + 1, y]) \
                          + int(img[x + 1, y - 1]) \
                          + int(img[x, y - 1])
                    if sum <= 2 * 245:
                      img[x, y] = 0
                elif x == height - 1:  # 右下顶点
                    sum = int(cur_pixel) \
                          + int(img[x, y - 1]) \
                          + int(img[x - 1, y]) \
                          + int(img[x - 1, y - 1])
    
                    if sum <= 2 * 245:
                      img[x, y] = 0
                else:  # 最下非顶点,6邻域
                    sum = int(cur_pixel) \
                          + int(img[x - 1, y]) \
                          + int(img[x + 1, y]) \
                          + int(img[x, y - 1]) \
                          + int(img[x - 1, y - 1]) \
                          + int(img[x + 1, y - 1])
                    if sum <= 3 * 245:
                      img[x, y] = 0
            else:  # y不在边界
                if x == 0:  # 左边非顶点
                    sum = int(img[x, y - 1]) \
                          + int(cur_pixel) \
                          + int(img[x, y + 1]) \
                          + int(img[x + 1, y - 1]) \
                          + int(img[x + 1, y]) \
                          + int(img[x + 1, y + 1])
    
                    if sum <= 3 * 245:
                      img[x, y] = 0
                elif x == height - 1:  # 右边非顶点
                    sum = int(img[x, y - 1]) \
                          + int(cur_pixel) \
                          + int(img[x, y + 1]) \
                          + int(img[x - 1, y - 1]) \
                          + int(img[x - 1, y]) \
                          + int(img[x - 1, y + 1])
    
                    if sum <= 3 * 245:
                      img[x, y] = 0
                else:  # 具备9领域条件的
                    sum = int(img[x - 1, y - 1]) \
                          + int(img[x - 1, y]) \
                          + int(img[x - 1, y + 1]) \
                          + int(img[x, y - 1]) \
                          + int(cur_pixel) \
                          + int(img[x, y + 1]) \
                          + int(img[x + 1, y - 1]) \
                          + int(img[x + 1, y]) \
                          + int(img[x + 1, y + 1])
                    if sum <= 4 * 245:
                      img[x, y] = 0
        cv2.imwrite(filename,img)
        return img
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101

    效果:
    在这里插入图片描述

    其实到了这一步,这些字符就可以识别了,没必要进行字符切割了,现在这三种类型的验证码识别率已经达到50%以上了

    2.4 字符切割

    字符切割通常用于验证码中有粘连的字符,粘连的字符不好识别,所以我们需要将粘连的字符切割为单个的字符,在进行识别

    字符切割的思路就是找到一个黑色的点,然后在遍历与他相邻的黑色的点,直到遍历完所有的连接起来的黑色的点,找出这些点中的最高的点、最低的点、最右边的点、最左边的点,记录下这四个点,认为这是一个字符,然后在向后遍历点,直至找到黑色的点,继续以上的步骤。最后通过每个字符的四个点进行切割

    在这里插入图片描述

    图中红色的点就是代码执行完后,标识出的每个字符的四个点,然后就会根据这四个点进行切割(图中画的有些误差,懂就好)

    但是也可以看到,m2是粘连的,代码认为他是一个字符,所以我们需要对每个字符的宽度进行检测,如果他的宽度过宽,我们就认为他是两个粘连在一起的字符,并将它在从中间切割

    确定每个字符的四个点代码:

    def cfs(im,x_fd,y_fd):
      '''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
      '''
    
      # print('**********')
    
      xaxis=[]
      yaxis=[]
      visited =set()
      q = Queue()
      q.put((x_fd, y_fd))
      visited.add((x_fd, y_fd))
      offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域
    
      while not q.empty():
          x,y=q.get()
    
          for xoffset,yoffset in offsets:
              x_neighbor,y_neighbor = x+xoffset,y+yoffset
    
              if (x_neighbor,y_neighbor) in (visited):
                  continue  # 已经访问过了
    
              visited.add((x_neighbor, y_neighbor))
    
              try:
                  if im[x_neighbor, y_neighbor] == 0:
                      xaxis.append(x_neighbor)
                      yaxis.append(y_neighbor)
                      q.put((x_neighbor,y_neighbor))
    
              except IndexError:
                  pass
      # print(xaxis)
      if (len(xaxis) == 0 | len(yaxis) == 0):
        xmax = x_fd + 1
        xmin = x_fd
        ymax = y_fd + 1
        ymin = y_fd
    
      else:
        xmax = max(xaxis)
        xmin = min(xaxis)
        ymax = max(yaxis)
        ymin = min(yaxis)
        #ymin,ymax=sort(yaxis)
    
      return ymax,ymin,xmax,xmin
    
    def detectFgPix(im,xmax):
      '''搜索区块起点
      '''
    
      h,w = im.shape[:2]
      for y_fd in range(xmax+1,w):
          for x_fd in range(h):
              if im[x_fd,y_fd] == 0:
                  return x_fd,y_fd
    
    def CFS(im):
      '''切割字符位置
      '''
    
      zoneL=[]#各区块长度L列表
      zoneWB=[]#各区块的X轴[起始,终点]列表
      zoneHB=[]#各区块的Y轴[起始,终点]列表
    
      xmax=0#上一区块结束黑点横坐标,这里是初始化
      for i in range(10):
    
          try:
              x_fd,y_fd = detectFgPix(im,xmax)
              # print(y_fd,x_fd)
              xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
              L = xmax - xmin
              H = ymax - ymin
              zoneL.append(L)
              zoneWB.append([xmin,xmax])
              zoneHB.append([ymin,ymax])
    
          except TypeError:
              return zoneL,zoneWB,zoneHB
    
      return zoneL,zoneWB,zoneHB
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84

    切割粘连字符代码:

    def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
      filename =  './out_img/' + img.split('.')[0]
      # 识别出的字符个数
      im_number = len(im_position[1])
      # 切割字符
      for i in range(im_number):
        im_start_X = im_position[1][i][0] - xoffset
        im_end_X = im_position[1][i][1] + xoffset
        im_start_Y = im_position[2][i][0] - yoffset
        im_end_Y = im_position[2][i][1] + yoffset
        cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
        cv2.imwrite(filename + '-cutting-' + str(i) + '.jpg',cropped)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    效果:

    在这里插入图片描述

    2.5 识别

    识别用的是typesseract库,主要识别一行字符和单个字符时的参数设置,识别中英文的参数设置,代码很简单就一行,我这里大多是filter文件的操作

    # 识别验证码
          cutting_img_num = 0
          for file in os.listdir('./out_img'):
            str_img = ''
            if fnmatch(file, '%s-cutting-*.jpg' % img_name.split('.')[0]):
              cutting_img_num += 1
          for i in range(cutting_img_num):
            try:
              file = './out_img/%s-cutting-%s.jpg' % (img_name.split('.')[0], i)
              # 识别字符
              str_img = str_img + image_to_string(Image.open(file),lang = 'eng', config='-psm 10') #单个字符是10,一行文本是7
            except Exception as err:
              pass
          print('切图:%s' % cutting_img_num)
          print('识别为:%s' % str_img)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    最后这种粘连字符的识别率是在30%左右,而且这种只是处理两个字符粘连,如果有两个以上的字符粘连还不能识别,但是根据字符宽度判别的话也不难,有兴趣的可以试一下

    无需切割字符识别的效果:

    在这里插入图片描述

    需要切割字符的识别效果:

    在这里插入图片描述

    3 基于tensorflow的验证码识别

    • python库: tensorflow, opencv, pandas, gpu机器。

    • 训练集: 10w 图片, 200step左右开始收敛。

    • 策略: 切分图片,训练单字母识别。预测时也是同样切分。(ps:不切分训练及识别,跑了一夜,没有收敛)

    • 准确率: 在区分大小写的情况下,单字母识别率98%, 整体识别率75%+。

    3.1 数据集

    在这里插入图片描述

    数据集预处理

    package com;
    import java.awt.Color;
    import java.io.File;
    import java.io.FileOutputStream;
    import java.io.IOException;
    import java.io.OutputStream;
    import java.util.Random;
     
    import org.patchca.color.ColorFactory;
    import org.patchca.filter.predefined.CurvesRippleFilterFactory;
    import org.patchca.filter.predefined.DiffuseRippleFilterFactory;
    import org.patchca.filter.predefined.DoubleRippleFilterFactory;
    import org.patchca.filter.predefined.MarbleRippleFilterFactory;
    import org.patchca.filter.predefined.WobbleRippleFilterFactory;
    import org.patchca.service.ConfigurableCaptchaService;
    import org.patchca.utils.encoder.EncoderHelper;
    import org.patchca.word.RandomWordFactory;
     
    public class CreatePatcha {
        private static Random random = new Random();
        private static ConfigurableCaptchaService cs = new ConfigurableCaptchaService();
        static {
            // cs.setColorFactory(new SingleColorFactory(new Color(25, 60, 170)));
            cs.setColorFactory(new ColorFactory() {
                @Override
                public Color getColor(int x) {
                    int[] c = new int[3];
                    int i = random.nextInt(c.length);
                    for (int fi = 0; fi < c.length; fi++) {
                        if (fi == i) {
                            c[fi] = random.nextInt(71);
                        } else {
                            c[fi] = random.nextInt(256);
                        }
                    }
                    return new Color(c[0], c[1], c[2]);
                }
            });
            RandomWordFactory wf = new RandomWordFactory();
    //      wf.setCharacters("23456789abcdefghigklmnpqrstuvwxyzABCDEFGHIGKLMNPQRSTUVWXYZ");
            wf.setCharacters("0123456789abcdefghigklmnopqrstuvwxyzABCDEFGHIGKLMNOPQRSTUVWXYZ");
            wf.setMaxLength(4);
            wf.setMinLength(4);
             
            cs.setWordFactory(wf);
        }
     
        public static void main(String[] args) throws IOException {
            for (int i = 0; i < 100; i++) {
                switch (random.nextInt(5)) {
                case 0:
                    cs.setFilterFactory(new CurvesRippleFilterFactory(cs
                            .getColorFactory()));
                    break;
                case 1:
                    cs.setFilterFactory(new MarbleRippleFilterFactory());
                    break;
                case 2:
                    cs.setFilterFactory(new DoubleRippleFilterFactory());
                    break;
                case 3:
                    cs.setFilterFactory(new WobbleRippleFilterFactory());
                    break;
                case 4:
                    cs.setFilterFactory(new DiffuseRippleFilterFactory());
                    break;
                }
     
                OutputStream out = new FileOutputStream(new File(i + ".png"));
                String token = EncoderHelper.getChallangeAndWriteImage(cs, "png",
                        out);
                out.close();
                File f = new File(i+".png");
                f.renameTo(new File("checkdata/" + token +"_" + i+".png"));
                System.out.println(i+"验证码=" + token);
            }
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78

    3.2 基于tf的神经网络训练代码

    #coding:utf-8from gen_captcha import gen_captcha_text_and_imagefrom gen_captcha import numberfrom gen_captcha import alphabetfrom gen_captcha import ALPHABETimport numpy as npimport tensorflow as tfimport osos.environ["CUDA_VISIBLE_DEVICES"] = "0"text, image = gen_captcha_text_and_image()print("验证码图像channel:", image.shape)  # (70, 160, 3)# 图像大小IMAGE_HEIGHT = 70IMAGE_WIDTH = 70MAX_CAPTCHA = len(text)print("验证码文本最长字符数", MAX_CAPTCHA)   # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐# 把彩色图像转为灰度图像(色彩对识别验证码没有什么用)def convert2gray(img):    if len(img.shape) > 2:        gray = np.mean(img, -1)        # 上面的转法较快,正规转法如下        # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]        # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b        return gray    else:        return img"""cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。np.pad(image【,((2,3),(2,2)), 'constant', constant_values=(255,))  # 在图像上补2行,下补3行,左补2行,右补2行"""# 文本转向量# char_set = number + alphabet + ALPHABET + ['_']  # 如果验证码长度小于4, '_'用来补齐char_set = number + alphabet + ALPHABET # 如果验证码长度小于4, '_'用来补齐CHAR_SET_LEN = len(char_set) #26*2+10+1=63def text2vec(text):    text_len = len(text)    if text_len > MAX_CAPTCHA:        raise ValueError('验证码最长4个字符')    vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)    def char2pos(c):        if c =='_':            k = 62            return k        k = ord(c)-48        if k > 9:            k = ord(c) - 55            if k > 35:                k = ord(c) - 61                if k > 61:                    raise ValueError('No Map')        return k    for i, c in enumerate(text):        idx = i * CHAR_SET_LEN + char2pos(c)        vector[idx] = 1    return vector# 向量转回文本def vec2text(vec):    char_pos = vec.nonzero()[0]    text=[]    for i, c in enumerate(char_pos):        char_at_pos = i #c/63        char_idx = c % CHAR_SET_LEN        if char_idx < 10:            char_code = char_idx + ord('0')        elif char_idx <36:            char_code = char_idx - 10 + ord('A')        elif char_idx < 62:            char_code = char_idx-  36 + ord('a')        elif char_idx == 62:            char_code = ord('_')        else:            raise ValueError('error')        text.append(chr(char_code))    return "".join(text)"""#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有vec = text2vec("F5Sd")text = vec2text(vec)print(text)  # F5Sdvec = text2vec("SFd5")text = vec2text(vec)print(text)  # SFd5"""# 生成一个训练batchdef get_next_batch(batch_size=128, train = True):    batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])    batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])    # 有时生成图像大小不是(70, 160, 3)    def wrap_gen_captcha_text_and_image(train):        while True:            text, image = gen_captcha_text_and_image(train)            if image.shape == (70, 70, 3):                return text, image    for i in range(batch_size):        text, image = wrap_gen_captcha_text_and_image(train)        image = convert2gray(image)        batch_x[i,:] = image.flatten() / 255 # (image.flatten()-128)/128  mean为0        batch_y[i,:] = text2vec(text)    return batch_x, batch_y####################################################################X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])keep_prob = tf.placeholder(tf.float32) # dropout# 定义CNNdef crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])    #w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #    #w_c2_alpha = np.sqrt(2.0/(3*3*32))    #w_c3_alpha = np.sqrt(2.0/(3*3*64))    #w_d1_alpha = np.sqrt(2.0/(8*32*64))    #out_alpha = np.sqrt(2.0/1024)    # 3 conv layer    w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32]))    b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')    conv1 = tf.nn.dropout(conv1, keep_prob)    w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64]))    b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')    conv2 = tf.nn.dropout(conv2, keep_prob)    w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))    b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')    conv3 = tf.nn.dropout(conv3, keep_prob)    # Fully connected layer    w_d = tf.Variable(w_alpha*tf.random_normal([9*9*64, 1024]))    b_d = tf.Variable(b_alpha*tf.random_normal([1024]))    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))    dense = tf.nn.dropout(dense, keep_prob)    w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))    b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))    out = tf.add(tf.matmul(dense, w_out), b_out)    #out = tf.nn.softmax(out)    return out# 训练def train_crack_captcha_cnn():    output = crack_captcha_cnn()    # loss    #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))    with tf.device('/gpu:0'):        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y))            # 最后一层用来分类的softmax和sigmoid有什么不同?        # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰        optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)        predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])        max_idx_p = tf.argmax(predict, 2)        max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)        correct_pred = tf.equal(max_idx_p, max_idx_l)        accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))    saver = tf.train.Saver()    config = tf.ConfigProto(allow_soft_placement=True)    config.gpu_options.allow_growth = True    with tf.Session(config=config) as sess:        sess.run(tf.global_variables_initializer())        step = 0        while True:            batch_x, batch_y = get_next_batch(256)            _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})            # 每100 step计算一次准确率            if step % 100 == 0:                batch_x_test, batch_y_test = get_next_batch(100, False)                acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})                print('step:%d,loss:%g' % (step, loss_))                print('step:%d,acc:%g'%(step, acc))                # 如果准确率大于50%,保存模型,完成训练                if acc > 0.98:                    saver.save(sess, "crack_capcha.model", global_step=step)                    break            step += 1def crack_captcha(captcha_image):    output = crack_captcha_cnn()    saver = tf.train.Saver()    with tf.Session() as sess:        saver.restore(sess, tf.train.latest_checkpoint('.'))        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})        text = text_list[0].tolist()        vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)        i = 0        for n in text:                vector[i*CHAR_SET_LEN + n] = 1                i += 1        return vec2text(vector)if __name__ == '__main__':    #text, image = gen_captcha_text_and_image()    #image = convert2gray(image)    #image = image.flatten() / 255    #predict_text = crack_captcha(image)    #print("正确: {}  预测: {}".format(text, predict_text))    train_crack_captcha_cnn()
    
    • 1

    在这里插入图片描述

    4 最后

    🧿 更多资料, 项目分享:

    https://gitee.com/dancheng-senior/postgraduate

  • 相关阅读:
    Swift 是 C++ 的最佳继任者
    数据库系统概论第六章(关系数据理论)知识点总结(1)—— 函数依赖概念总结
    蓝牙方案|伦茨科技最新ESL蓝牙电子价签方案
    OFDM 十六讲 6 Inter symbol Interference
    Python+医学院校二手书管理 毕业设计-附源码201704
    Springboot----实现邮箱验证码登录(代码部分)
    内存管理机制
    2022年陕西水利水电施工安全员模拟试题及答案
    java-net-php-python-jsp生活用品购物系统计算机毕业设计程序
    C++中&&的作用
  • 原文地址:https://blog.csdn.net/iuerfee/article/details/134405078