HPA(Horizontal Pod Autoscaling)Pod 水平自动伸缩,Kubernetes 有一个 HPA 的资源,HPA 可以根据 CPU 利用率自动伸缩一个 Replication Controller、Deployment 或者Replica Set 中的 Pod 数量。
(1)HPA 基于 Master 上的 kube-controller-manager 服务启动参数 horizontal-pod-autoscaler-sync-period 定义的时长(默认为30秒),周期性的检测 Pod 的 CPU 使用率。
(2)HPA 与之前的 RC、Deployment 一样,也属于一种 Kubernetes 资源对象。通过追踪分析 RC 控制的所有目标 Pod 的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,这是HPA的实现原理。
(3)metrics-server 也需要部署到集群中, 它可以通过 resource metrics API 对外提供度量数据。
部署 metrics-server
metrics-server:是kubernetes集群资源使用情况的聚合器,收集数据给kubernetes集群内使用,如kubectl、hpa、scheduler等。
在所有 Node 节点上传 metrics-server.tar 镜像包到 /opt 目录
- cd /opt/
- docker load -i metrics-server.tar
使用 helm install 安装 metrics-server
- mkdir /opt/metrics
- cd /opt/metrics
-
- helm repo remove stable
-
- helm repo add stable https://charts.helm.sh/stable
- 或
- helm repo add stable http://mirror.azure.cn/kubernetes/charts
-
- helm repo update
-
- helm pull stable/metrics-server
-
- vim metrics-server.yaml
- args:
- - --logtostderr
- - --kubelet-insecure-tls
- - --kubelet-preferred-address-types=InternalIP
- image:
- repository: k8s.gcr.io/metrics-server-amd64
- tag: v0.3.2
-
使用 helm install 安装 metrics-server
- helm install metrics-server stable/metrics-server -n kube-system -f metrics-server.yaml
-
- kubectl get pods -n kube-system | grep metrics-server
-
-
- #需要多等一会儿
- kubectl top node
-
- kubectl top pods --all-namespaces
部署 HPA
在所有节点上传 hpa-example.tar 镜像文件到 /opt 目录
hpa-example.tar 是谷歌基于 PHP 语言开发的用于测试 HPA 的镜像,其中包含了一些可以运行 CPU 密集计算任务的代码。
- cd /opt
- docker load -i hpa-example.tar
-
- docker images | grep hpa-example
- gcr.io/google_containers/hpa-example latest 4ca4c13a6d7c 5 years ago 481MB
-
创建用于测试的 Pod 资源,并设置请求资源为 cpu=200m
- vim hpa-pod.yaml
- apiVersion: apps/v1
- kind: Deployment
- metadata:
- labels:
- run: php-apache
- name: php-apache
- spec:
- replicas: 1
- selector:
- matchLabels:
- run: php-apache
- template:
- metadata:
- labels:
- run: php-apache
- spec:
- containers:
- - image: gcr.io/google_containers/hpa-example
- name: php-apache
- imagePullPolicy: IfNotPresent
- ports:
- - containerPort: 80
- resources:
- requests:
- cpu: 200m
- ---
- apiVersion: v1
- kind: Service
- metadata:
- name: php-apache
- spec:
- ports:
- - port: 80
- protocol: TCP
- targetPort: 80
- selector:
- run: php-apache
-
- kubectl apply -f hpa-pod.yaml
-
- kubectl get pods
使用 kubectl autoscale 命令创建 HPA 控制器,设置 cpu 负载阈值为请求资源的 50%,指定最少负载节点数量为 1 个,最大负载节点数量为 10 个
kubectl autoscale deployment php-apache --cpu-percent=50 --min=1 --max=10
需要等一会儿,才能获取到指标信息 TARGETS
- kubectl get hpa
- kubectl top pods
-
创建一个测试客户端容器
kubectl run -it load-generator --image=busybox /bin/sh
增加负载
# while true; do wget -q -O- http://php-apache.default.svc.cluster.local; done
打开一个新的窗口,查看负载节点数目
kubectl get hpa -w
以上可以看到经过压测,负载节点数量最大上升到 10 个,并且 cpu 负载也随之下降。
如果 cpu 性能较好导致负载节点上升不到 10 个,可再创建一个测试客户端同时测试:
- kubectl run -i --tty load-generator1 --image=busybox /bin/sh
- # while true; do wget -q -O- http://php-apache.default.svc.cluster.local; done
查看 Pod 状态,也发现已经创建了 10 个 Pod 资源
kubectl get pods
#HPA 扩容的时候,负载节点数量上升速度会比较快;但回收的时候,负载节点数量下降速度会比较慢。
原因是防止在业务高峰期时因为网络波动等原因的场景下,如果回收策略比较积极的话,K8S集群可能会认为访问流量变小而快速收缩负载节点数量,而仅剩的负载节点又承受不了高负载的压力导致崩溃,从而影响业务。
扩展
资源限制 - Pod
Kubernetes对资源的限制实际上是通过cgroup来控制的,cgroup是容器的一组用来控制内核如何运行进程的相关属性集合。针对内存、CPU 和各种设备都有对应的 cgroup。
默认情况下,Pod 运行没有 CPU 和内存的限额。这意味着系统中的任何 Pod 将能够像执行该 Pod 所在的节点一样, 消耗足够多的 CPU 和内存。一般会针对某些应用的 pod 资源进行资源限制,这个资源限制是通过 resources 的 requests 和 limits 来实现。requests 为创建 Pod 时初始要分配的资源,limits 为 Pod 最高请求的资源值。
示例:
- spec:
- containers:
- - image: xxxx
- imagePullPolicy: IfNotPresent
- name: auth
- ports:
- - containerPort: 8080
- protocol: TCP
- resources:
- limits:
- cpu: "2"
- memory: 1Gi
- requests:
- cpu: 250m
- memory: 250Mi
-
资源限制 - 命名空间
1.计算资源配额
- apiVersion: v1
- kind: ResourceQuota #使用 ResourceQuota 资源类型
- metadata:
- name: compute-resources
- namespace: spark-cluster #指定命令空间
- spec:
- hard:
- pods: "20" #设置 Pod 数量最大值
- requests.cpu: "2"
- requests.memory: 1Gi
- limits.cpu: "4"
- limits.memory: 2Gi
-
2.配置对象数量配额限制
- apiVersion: v1
- kind: ResourceQuota
- metadata:
- name: object-counts
- namespace: spark-cluster
- spec:
- hard:
- configmaps: "10"
- persistentvolumeclaims: "4" #设置 pvc 数量最大值
- replicationcontrollers: "20" #设置 rc 数量最大值
- secrets: "10"
- services: "10"
- services.loadbalancers: "2"
#如果Pod没有设置requests和limits,则会使用当前命名空间的最大资源;如果命名空间也没设置,则会使用集群的最大资源。
K8S 会根据 limits 限制 Pod 使用资源,当内存超过 limits 时 cgruops 会触发 OOM。
这里就需要创建 LimitRange 资源来设置 Pod 或其中的 Container 能够使用资源的最大默认值
- apiVersion: v1
- kind: LimitRange #使用 LimitRange 资源类型
- metadata:
- name: mem-limit-range
- namespace: test #可以给指定的 namespace 增加一个资源限制
- spec:
- limits:
- - default: #default 即 limit 的值
- memory: 512Mi
- cpu: 500m
- defaultRequest: #defaultRequest 即 request 的值
- memory: 256Mi
- cpu: 100m
- type: Container #类型支持 Container、Pod、PVC