说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。
本项目通过WOA智能鲸鱼优化算法寻找最优的参数值来优化CNN回归模型。
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 | 变量名称 | 描述 |
1 | x1 | |
2 | x2 | |
3 | x3 | |
4 | x4 | |
5 | x5 | |
6 | x6 | |
7 | x7 | |
8 | x8 | |
9 | x9 | |
10 | x10 | |
11 | y | 因变量 |
数据详情如下(部分展示):
使用Pandas工具的head()方法查看前五行数据:
关键代码:
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
用Matplotlib工具的hist()方法绘制直方图:
从上图可以看到,y变量主要集中在-400~400之间。
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
关键代码如下:
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
数据样本增加维度后的数据形状:
主要使用WOA智能鲸鱼优化算法优化CNN回归算法,用于目标回归。
最优参数:
编号 | 模型名称 | 参数 |
1 | CNN回归模型 | units=best_units |
2 | epochs=best_epochs |
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
CNN回归模型 | R方 | 0.9233 |
均方误差 | 3001.8962 | |
可解释方差值 | 0.9234 | |
平均绝对误差 | 42.2745 |
从上表可以看出,R方0.9233,为模型效果较好。
关键代码如下:
从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。
综上所述,本文采用了WOA智能鲸鱼优化算法寻找CNN回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
- # 本次机器学习项目实战所需的资料,项目资源如下:
-
- # 项目说明:
-
- 链接:https://pan.baidu.com/s/1bfGtGMDahOWnlk7ssXdFYw
- 提取码:ya8i
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客