二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。一棵AVL树或者是空树,或者具有以下性质的二叉搜索树:
- 它的左右子树都是AVL树
- 左右子树的高度差(简称平衡因子)的绝对值不超过1(只能是-1/0/1)
【注意】平衡因子是用右子树的高度减去左子树的高度得到的
- template<class K,class V>
- struct AVLTreeNode {
- AVLTreeNode* _left;
- AVLTreeNode* _right;
- AVLTreeNode* _parent;
- pair
_kv; - int _bf;
-
-
- AVLTreeNode(const pair
& kv) - :_left(nullptr)
- , _right(nullptr)
- , _parent(nullptr)
- ,_kv(kv)
- ,_bf(0)
- {}
- };
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。AVL树的插入过程可以分为两步:
- 按照二叉搜索树的方式插入新节点
- 调整节点的平衡因子
- template<class K,class V>
- class AVLTree {
- typedef AVLTreeNode
Node; - public:
- bool insert(const pair
& kv) - {
- if (_root == nullptr)
- {
- _root = new Node(kv);
- return true;
- }
-
- Node* cur = _root;
- Node* parent = nullptr;
- while (cur)
- {
- if(cur->_kv.first>kv.first)
- {
- parent = cur;
- cur = cur->_left;
- }
- else if (cur->_kv.first < kv.first)
- {
- parent = cur;
- cur = cur->_right;
- }
- else
- {
- return false;
- }
- }
-
- cur = new Node(kv);
- cur->_parent = parent;
- if (parent->_kv.first > kv.first )
- {
- parent->_left = cur;
- }
- else
- {
- parent->_right = cur;
- }
-
- //看树是否还保持平衡
- while (parent)
- {
- //先调整平衡因子---因为插入的结点是叶子节点,所以父结点的平衡因子必然发生变化
- //在根据平衡因子的计算公式height_r - height_l,判断平衡因子的变化
- if (parent->_left == cur)
- {
- parent->_bf--;
- }
- else
- {
- parent->_bf++;
- }
-
- //看是否需要调整以及如何调整
- //...
- }
- }
- private:
- Node* _root = nullptr;
- };
上面代码的插入逻辑和二叉搜索树很相似,这里不多讲了(忘记的或者不了解的可以去看二叉搜索树),主要看如何判断树是否平衡以及如何调整使得树保持平衡
这里主要分三种情况:
1、父节点的平衡因子变成0,则树保持平衡,不需要变化
解释:父节点的平衡因子变成0,说明之前未正负1,只有如下两种情况
2、父节点的平衡因子变成正负1,则该子树的高度发生变化,但该子树依旧平衡,要看它的父节点所在的子树是否还能保持平衡
3、父结点的平衡因子变成正负2,则该子树的不能保持平衡,需要进行旋转调整
- template<class K,class V>
- class AVLTree {
- typedef AVLTreeNode
Node; - public:
- bool insert(const pair
& kv) - {
- if (_root == nullptr)
- {
- _root = new Node(kv);
- return true;
- }
-
- Node* cur = _root;
- Node* parent = nullptr;
- while (cur)
- {
- if(cur->_kv.first>kv.first)
- {
- parent = cur;
- cur = cur->_left;
- }
- else if (cur->_kv.first < kv.first)
- {
- parent = cur;
- cur = cur->_right;
- }
- else
- {
- return false;
- }
- }
-
- cur = new Node(kv);
- cur->_parent = parent;
- if (parent->_kv.first > kv.first )
- {
- parent->_left = cur;
- }
- else
- {
- parent->_right = cur;
- }
-
- //看树是否还保持平衡
- while (parent)
- {
- //先调整平衡因子
- if (parent->_left == cur)
- {
- parent->_bf--;
- }
- else
- {
- parent->_bf++;
- }
-
- if (parent->_bf == 0)
- {
- break;
- }
- else if (parent->_bf == 1 || parent->_bf == -1)
- {
- cur = parent;
- parent = parent->_parent;
- }
- else if (parent->_bf == 2 || parent->_bf == -2)
- {
- //分4种情况:左单旋,右单旋,先左旋在右旋,先右旋在左旋
- //...
-
- //旋转完成后子树就平衡了=> 整个树都平衡了,直接退出循环
- break;
- }
- else
- {
- //如果进入这里,说明前面的代码出错
- assert(0);
- }
- }
- }
- private:
- Node* _root = nullptr;
- };
1、新节点插入较高右子树的右侧---右右:左单旋
代码如下
- void _RotateL(Node* parent)
- {
- Node* subR = parent->_right;
- Node* subRL = subR->_left;
- Node* pParent = parent->_parent;
- subR->_left = parent;
- parent->_parent = subR;
- if (subRL)//注意h==0的情况
- subRL->_parent = parent;
- if (_root == parent)
- {
- _root = subR;
- subR->_parent = nullptr;
- }
- else
- {
- subR->_parent = pParent;
- if (pParent->_left == parent)
- {
- pParent->_left = subR;
- }
- else
- {
- pParent->_right = subR;
- }
- }
- subR->_bf = parent->_bf = 0;
- }
2、 新节点插入较高左子树的左侧---左左:右单旋
注意事项同上。
代码如下
- void _RotateR(Node* parent)
- {
- Node* subL = parent->_left;
- Node* subLR = subL->_right;
- Node* pParent = parent->_parent;
- subL->_right = parent;
- parent->_parent = subL;
- if (subLR)//注意h==0的情况
- subLR->_parent = parent;
- if (_root == parent)
- {
- _root = subL;
- subL->_parent = nullptr;
- }
- else
- {
- subL->_parent = pParent;
- if (pParent->_left == parent)
- {
- pParent->_left = subL;
- }
- else
- {
- pParent->_right = subL;
- }
- }
- subL->_bf = parent->_bf = 0;
- }
3、 新节点插入较高右子树的左侧---右左:先右单旋再左单旋
代码如下
- void _RotateRL(Node* parent)
- {
- Node* subR = parent->_right;
- Node* subRL = subR->_left;
- int bf = subRL->_bf;//提前记录,防止在旋转时被修改
- _RotateR(parent->_right);
- _RotateL(parent);
- if (bf == 0)
- {
- parent->_bf = subR->_bf = subRL->_bf = 0;
- }
- else if (bf == 1)
- {
- parent->_bf = -1;
- subR->_bf = subRL->_bf = 0;
- }
- else
- {
- subR->_bf = 1;
- parent->_bf = subRL->_bf = 0;
- }
- }
4.新节点插入较高左子树的右侧---左右:先左单旋再右单旋
这个留给读者思考
附:
- //完整版代码
- template<class K,class V>
- struct AVLTreeNode {
- AVLTreeNode* _left;
- AVLTreeNode* _right;
- AVLTreeNode* _parent;
- pair
_kv; - int _bf;
-
-
- AVLTreeNode(const pair
& kv) - :_left(nullptr)
- , _right(nullptr)
- , _parent(nullptr)
- ,_kv(kv)
- ,_bf(0)
- {}
- };
-
- template<class K,class V>
- class AVLTree {
- typedef AVLTreeNode
Node; - public:
- bool insert(const pair
& kv) - {
- if (_root == nullptr)
- {
- _root = new Node(kv);
- return true;
- }
-
- Node* cur = _root;
- Node* parent = nullptr;
- while (cur)
- {
- if (cur->_kv.first > kv.first)
- {
- parent = cur;
- cur = cur->_left;
- }
- else if (cur->_kv.first < kv.first)
- {
- parent = cur;
- cur = cur->_right;
- }
- else
- {
- return false;
- }
- }
-
- cur = new Node(kv);
- cur->_parent = parent;
- if (parent->_kv.first > kv.first)
- {
- parent->_left = cur;
- }
- else
- {
- parent->_right = cur;
- }
-
- while (parent)
- {
- if (parent->_left == cur)
- {
- parent->_bf--;
- }
- else
- {
- parent->_bf++;
- }
-
- if (parent->_bf == 0)//为0,说明之前_bf=-1/1,即子树的高度没有发生变化
- {
- break;
- }
- else if (parent->_bf == 1 || parent->_bf == -1)//为正负1,说明之前_bf=0,即子树的高度发生变化,并且会影响到上层祖宗结点
- {
- cur = parent;
- parent = parent->_parent;
- }
- else if (parent->_bf == 2 || parent->_bf == -2)//为正负2,树明显不平衡,需要旋转调整
- {
- if (parent->_bf == 2 && cur->_bf == 1)//如果该子树的严格右边高,则左单旋
- {
- _RotateL(parent);
- }
- else if (parent->_bf == -2 && cur->_bf == -1)//如果该子树的严格左边高,则右单旋
- {
- _RotateR(parent);
- }
- else if (parent->_bf == -2 && cur->_bf == 1)//左右旋
- {
- _RotateLR(parent);
- }
- else if (parent->_bf == 2 && cur->_bf == -1)//右旋左旋
- {
- _RotateRL(parent);
- }
-
- break;//旋转之后整个树就平衡了,直接跳出循环
- }
- else
- {
- //这种情况不可能发生,如果发生就说明程序出错
- assert(false);
- }
- }
- return true;
- }
-
- void _RotateLR(Node* parent)
- {
- Node* subL = parent->_left;
- Node* subLR = subL->_right;
- int bf = subLR->_bf;
- _RotateL(parent->_left);
- _RotateR(parent);
- if (bf == 1)
- {
- subL->_bf = -1;
- subLR->_bf = parent->_bf = 0;
- }
- else if(bf == -1)
- {
- parent->_bf = 1;
- subL->_bf = subLR->_bf = 0;
- }
- else//bf==0,插入的结点就是subLR
- {
- parent->_bf = subL->_bf = subLR->_bf = 0;
- }
- }
-
- void _RotateRL(Node* parent)
- {
- Node* subR = parent->_right;
- Node* subRL = subR->_left;
- int bf = subRL->_bf;
- _RotateR(parent->_right);
- _RotateL(parent);
- if (bf == 1)
- {
- parent->_bf = -1;
- subR->_bf = subRL->_bf = 0;
- }
- else if(bf == -1)
- {
- subR->_bf = 1;
- parent->_bf = subRL->_bf = 0;
- }
- else //bf==0,插入的结点就是subLR
- {
- parent->_bf = subR->_bf = subRL->_bf = 0;
- }
- }
-
- //右单旋
- void _RotateR(Node*parent)
- {
- Node* subL = parent->_left;//找到要作为新根的结点
- Node* pParent = parent->_parent;//找到该子树的父亲结点
- Node* subLR = subL->_right;
- subL->_right = parent;
- parent->_parent = subL;
- parent->_left = subLR;
- if (subLR)
- subLR->_parent = parent;
- if (_root == parent)//如果是根
- {
- _root = subL;
- subL->_parent = nullptr;
- }
- else
- {
- subL->_parent = pParent;
- if (pParent->_left == parent)
- {
- pParent->_left = subL;
- }
- else
- {
- pParent->_right = subL;
- }
- }
- parent->_bf = subL->_bf = 0;
- }
-
- //左单旋
- void _RotateL(Node* parent)
- {
- Node* subR = parent->_right;//找到要作为新根的结点
- Node* pParent = parent->_parent;//找到该子树的父亲结点
- Node* subRL = subR->_left;//找到要被"过继"的孩子结点
- subR->_left = parent;
- if (subRL)//如有"过继"结点
- subRL->_parent = parent;
- parent->_parent = subR;
- parent->_right = subRL;
- if (_root == parent)//如果是根
- {
- _root = subR;
- subR->_parent = nullptr;
- }
- else
- {
- subR->_parent = pParent;
- if (pParent->_left == parent)
- {
- pParent->_left = subR;
- }
- else
- {
- pParent->_right = subR;
- }
- }
- parent->_bf = subR->_bf = 0;
- }
-
-
- bool Isbalance()
- {
- return _Isbalance(_root);
- //return _Isbalance(_root) >= 0;
- }
- bool _Isbalance(Node*root)
- {
- if (root == nullptr)
- return true;
- int left = _Height(root->_left);
- int right = _Height(root->_right);
- if (abs(right - left) > 1)
- {
- cout << root->_kv.first << ":" << root->_kv.second << endl;
- return false;
- }
- if (right - left != root->_bf)
- {
- cout << root->_kv.first << ":"<< "平衡因子出错" << endl;
- return false;
- }
- return _Isbalance(root->_left) && _Isbalance(root->_right);
- }
-
- size_t size()
- {
- return _size(_root);
- }
-
- size_t Height()
- {
- return _Height(_root);
- }
-
- private:
- size_t _Height(Node*root)
- {
- if (root == nullptr)
- return 0;
- return max(_Height(root->_left),_Height(root->_right)) + 1;
- }
- size_t _size(Node* root)
- {
- if (root == nullptr)
- return 0;
- return 1 + _size(root->_left) + _size(root->_right);
- }
-
- //如果单纯判断是否平衡可以这么写,-1表示不平衡,>=0表示平衡
- //int _Isbalance(Node* root)
- //{
- // if (root == nullptr)
- // return 0;
- // int left = _Isbalance(root->_left);
- // if (left < 0) return -1;
- // int right = _Isbalance(root->_right);
- // if (right < 0) return -1;
- // if (abs(right - left) > 1 || right - left != root->_bf)
- // {
- // return -1;
- // }
- // return max(left, right) + 1;
- //}
- private:
- Node* _root = nullptr;
- };