• 深入解析 Redis 分布式锁原理


    一、实现原理

    1.1 基本原理

    JDK 原生的锁可以让不同线程之间以互斥的方式来访问共享资源,但如果想要在不同进程之间以互斥的方式来访问共享资源,JDK 原生的锁就无能为力了。此时可以使用 Redis 来实现分布式锁。

    Redis 实现分布式锁的核心命令如下:

    SETNX key value

    SETNX 命令的作用是:如果指定的 key 不存在,则创建并为其设置值,然后返回状态码 1;如果指定的 key 存在,则直接返回 0。如果返回值为 1,代表获得该锁;此时其他进程再次尝试创建时,由于 key 已经存在,则都会返回 0 ,代表锁已经被占用。

    当获得锁的进程处理完成业务后,再通过 del 命令将该 key 删除,其他进程就可以再次竞争性地进行创建,获得该锁。

    通常为了避免死锁,我们会为锁设置一个超时时间,在 Redis 中可以通过 expire 命令来进行实现:

    EXPIRE key seconds

    这里我们将两者结合起来,并使用 Jedis 客户端来进行实现,其代码如下:

    1. Long result = jedis.setnx("lockKey", "lockValue");
    2. if (result == 1) {
    3. // 如果此处程序被异常终止(如直接kill -9进程),则设置超时的操作就无法进行,该锁就会出现死锁
    4. jedis.expire("lockKey", 3);
    5. }

    上面的代码存在原子性问题,即 setnx + expire 操作是非原子性的,如果在设置超时时间前,程序被异常终止,则程序就会出现死锁。此时可以将 SETNX 和 EXPIRE 两个命令写在同一个 Lua 脚本中,然后通过调用 Jedis 的 eval() 方法来执行,并由 Redis 来保证整个 Lua 脚本操作的原子性。这种方式实现比较繁琐,因此官方文档中推荐了另外一种更加优雅的实现方法:

    1.2 官方推荐

    [官方文档]( Distributed locks with Redis) 中推荐直接使用 set 命令来进行实现:

    SET key value [EX seconds|PX milliseconds] [NX|XX] [KEEPTTL]

    这里我们主要关注以下四个参数:

    • EX :设置超时时间,单位是秒;
    • PX :设置超时时间,单位是毫秒;
    • NX :当且仅当对应的 Key 不存在时才进行设置;
    • XX:当且仅当对应的 Key 存在时才进行设置。

    这四个参数从 Redis 2.6.12 版本开始支持,因为当前大多数在用的 Redis 都已经高于这个版本,所以推荐直接使用该命令来实现分布式锁。对应的 Jedis 代码如下:

    jedis.set("lockKey", "lockValue", SetParams.setParams().nx().ex(3));

    此时一条命令就可以完成值和超时时间的设置,并且因为只有一条命令,因此其原子性也得到了保证。但因为引入了超时时间来避免死锁,同时也引出了其它两个问题:

    • 问题一:当业务处理的时间超过过期时间后(图中进程 A),由于锁已经被释放,此时其他进程就可以获得该锁(图中进程 B),这意味着有两个进程(A 和 B)同时进入了临界区,此时分布式锁就失效了;
    • 问题二:如上图所示,当进程 A 业务处理完成后,此时删除的是进程 B 的锁,进而导致分布式锁又一次失效,让进程 B 和 进程 C 同时进入了临界区。

    针对问题二,我们可以在创建锁时为其指定一个唯一的标识作为 Key 的 Value,这里假设我们采用 UUID + 线程ID 来作为唯一标识:

    1. String identifier = UUID.randomUUID() + ":" + Thread.currentThread().getId();
    2. jedis.set("LockKey", identifier, SetParams.setParams().nx().ex(3));

    然后在删除锁前,先将该唯一标识与锁的 Value 值进行比较,如果不相等,证明该锁不属于当前的操作对象,此时不执行删除操作。为保证判断操作和删除操作整体的原子性,这里需要使用 Lua 脚本来执行:

    1. if redis.call("get",KEYS[1]) == ARGV[1] then
    2. return redis.call("del",KEYS[1])
    3. else
    4. return 0
    5. end

    这段脚本的意思是如果 value 的值与给定的值相同,则执行删除命令,否则直接返回状态码 0 。对应使用 Jedis 实现的代码如下:

    1. String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
    2. jedis.eval(script,
    3. Collections.singletonList("LockKey"), // keys的集合
    4. Collections.singletonList(identifier) // args的集合
    5. );

    接着再看问题一,问题一最简单的解决方法是:你可以估计业务的最大处理时间,然后保证设置的过期时间大于最大处理时间。但是由于业务会面临各种复杂的情况,因此可能无法保证业务每一次都能在规定的过期时间内处理完成,此时可以使用延长锁时效的策略。

    1.3 延长锁时效

    延长锁时效的方案如下:假设锁超时时间是 30 秒,此时程序需要每隔一段时间去扫描一下该锁是否还存在,扫描时间需要小于超时时间,通常可以设置为超时时间的 1/3,在这里也就是 10 秒扫描一次。如果锁还存在,则重置其超时时间恢复到 30 秒。通过这种方案,只要业务还没有处理完成,锁就会一直有效;而当业务一旦处理完成,程序也会马上删除该锁。

    Redis 的 Java 客户端 Redisson 提供的分布式锁就支持类似的延长锁时效的策略,称为 WatchDog,直译过来就是 “看门狗” 机制。

    以上讨论的都是单机环境下的 Redis 分布式锁,而想要保证 Redis 分布式锁是高可用,首先 Redis 得是高可用的,Redis 的高可用模式主要有两种:哨兵模式和集群模式。以下分别进行讨论:

    二、哨兵模式与分布式锁

    哨兵模式是主从模式的升级版,能够在故障发生时自动进行故障切换,选举出新的主节点。但由于 Redis 的复制机制是异步的,因此在哨兵模式下实现的分布式锁是不可靠的,原因如下:

    • 由于主从之间的复制操作是异步的,当主节点上创建好锁后,此时从节点上的锁可能尚未创建。而如果此时主节点发生了宕机,从节点上将不会创建该分布式锁;
    • 从节点晋升为主节点后,其他进程(或线程)仍然可以在该新主节点创建分布式锁,此时就存在多个进程(或线程)同时进入了临界区,分布式锁就失效了。

    因此在哨兵模式下,无法避免锁失效的问题。因此想要实现高可用的分布式锁,可以采取 Redis 的另一个高可用方案 —— Redis 集群模式。

    三、集群模式与分布式锁

    3.1 RedLock 方案

    想要在集群模式下实现分布式锁,Redis 提供了一种称为 RedLock 的方案,假设我们有 N 个 Redis 实例,此时客户端的执行过程如下:

    • 以毫秒为单位记录当前的时间,作为开始时间;
    • 接着采用和单机版相同的方式,依次尝试在每个实例上创建锁。为了避免客户端长时间与某个故障的 Redis 节点通讯而导致阻塞,这里采用快速轮询的方式:假设创建锁时设置的超时时间为 10 秒,则访问每个 Redis 实例的超时时间可能在 5 到 50 毫秒之间,如果在这个时间内还没有建立通信,则尝试连接下一个实例;
    • 如果在至少 N/2+1 个实例上都成功创建了锁。并且 当前时间 - 开始时间 < 锁的超时时间 ,则认为已经获取了锁,锁的有效时间等于 超时时间 - 花费时间(如果考虑不同 Redis 实例所在服务器的时钟漂移,则还需要减去时钟漂移);
    • 如果少于 N/2+1 个实例,则认为创建分布式锁失败,此时需要删除这些实例上已创建的锁,以便其他客户端进行创建。
    • 该客户端在失败后,可以等待一个随机的时间后,再次进行重试。

    以上就是 RedLock 的实现方案,可以看到主要是由客户端来实现的,并不真正涉及到 Redis 集群相关的功能。因此这里的 N 个 Redis 实例并不要求是一个真正的 Redis 集群,它们彼此之间可以是完全独立的,但由于只需要半数节点获得锁就能真正获得锁,因此其仍然具备容错性和高可用性。后面使用 Redisson 来演示 RedLock 时会再次验证这一点。

    3.2 低延迟通讯

    另外实现 RedLock 方案的客户端与所有 Redis 实例进行通讯时,必须要保证低延迟,而且最好能使用多路复用技术来保证一次性将 SET 命令发送到所有 Redis 节点上,并获取到对应的执行结果。如果网络延迟较高,假设客户端 A 和 B 都在尝试创建锁:

    1. SET key 随机数A EX 3 NX #A客户端
    2. SET key 随机数B EX 3 NX #B客户端

    此时可能客户端 A 在一半节点上创建了锁,而客户端 B 在另外一半节点上创建了锁,那么两个客户端都将无法获取到锁。如果并发很高,则可能存在多个客户端分别在部分节点上创建了锁,而没有一个客户端的数量超过 N/2+1。这也就是上面过程的最后一步中,强调一旦客户端失败后,需要等待一个随机时间后再进行重试的原因,如果是一个固定时间,则所有失败的客户端又同时发起重试,情况就还是一样。

    因此最佳的实现就是客户端的 SET 命令能几乎同时到达所有节点,并几乎同时接受到所有执行结果。 想要保证这一点,低延迟的网络通信极为关键,下文介绍的 Redisson 就采用 Netty 框架来保证这一功能的实现。

    3.3 持久化与高可用

    为了保证高可用,所有 Redis 节点还需要开启持久化。假设不开启持久化,假设进程 A 获得锁后正在处理业务逻辑,此时节点宕机重启,因为锁数据丢失了,其他进程便可以再次创建该锁,因此所有 Redis 节点都需要开启 AOF 的持久化方式。

    AOF 默认的同步机制为 everysec,即每秒进程一次持久化,此时能够兼顾性能与数据安全,发生意外宕机的时,最多会丢失一秒的数据。但如果碰巧就是在这一秒的时间内进程 A 创建了锁,并由于宕机而导致数据丢失。此时其他进程还可以创建该锁,锁的互斥性也就失效了。想要解决这个问题有两种方式:

    • 方式一:修改 Redis.conf 中 appendfsync 的值为 always,即每次命令后都进行持久化,此时会降低 Redis 性能,进而也会降低分布式锁的性能,但锁的互斥性得到了绝对的保证;
    • 方式二:一旦节点宕机了,需要等到锁的超时时间过了之后才进行重启,此时相当于原有锁自然失效(但你首先需要保证业务能在设定的超时时间内完成),这种方案也称为延时重启。

    四、Redisson

    Redisson 是 Redis 的 Java 客户端,它提供了各种的 Redis 分布式锁的实现,如可重入锁、公平锁、RedLock、读写锁等等,并且在实现上考虑得也更加全面,适用于生产环境下使用。

    4.1 分布式锁

    使用 Redisson 来创建单机版本分布式锁非常简单,示例如下:

    1. // 1.创建RedissonClient,如果与spring集成,可以将RedissonClient声明为Bean,在使用时注入即可
    2. Config config = new Config();
    3. config.useSingleServer().setAddress("redis://192.168.0.100:6379");
    4. RedissonClient redissonClient = Redisson.create(config);
    5. // 2.创建锁实例
    6. RLock lock = redissonClient.getLock("myLock");
    7. try {
    8. //3.尝试获取分布式锁,第一个参数为等待时间,第二个参数为锁过期时间
    9. boolean isLock = lock.tryLock(10, 30, TimeUnit.SECONDS);
    10. if (isLock) {
    11. // 4.模拟业务处理
    12. System.out.println("处理业务逻辑");
    13. Thread.sleep(20 * 1000);
    14. }
    15. } catch (Exception e) {
    16. e.printStackTrace();
    17. } finally {
    18. //5.释放锁
    19. lock.unlock();
    20. }
    21. redissonClient.shutdown();

    此时对应在 Redis 中的数据结构如下:

    可以看到 key 就是代码中设置的锁名,而 value 值的类型是 hash,其中键 9280e909-c86b-43ec-b11d-6e5a7745e2e9:13 的格式为 UUID + 线程ID ;键对应的值为 1,代表加锁的次数。之所以要采用 hash 这种格式,主要是因为 Redisson 创建的锁是具有重入性的,即你可以多次进行加锁:

    1. boolean isLock1 = lock.tryLock(0, 30, TimeUnit.SECONDS);
    2. boolean isLock2 = lock.tryLock(0, 30, TimeUnit.SECONDS);

    此时对应的值就会变成 2,代表加了两次锁:

    当然和其他重入锁一样,需要保证解锁的次数和加锁的次数一样,才能完全解锁:

    1. lock.unlock();
    2. lock.unlock();

    4.2 RedLock

    Redisson 也实现了 Redis 官方推荐的 RedLock 方案,这里我们启动三个 Redis 实例进行演示,它们彼此之间可以是完全独立的,并不需要进行集群的相关配置:

    1. $ ./redis-server ../redis.conf
    2. $ ./redis-server ../redis.conf --port 6380
    3. $ ./redis-server ../redis.conf --port 6381

    对应的代码示例如下:

    1. // 1.创建RedissonClient
    2. Config config01 = new Config();
    3. config01.useSingleServer().setAddress("redis://192.168.0.100:6379");
    4. RedissonClient redissonClient01 = Redisson.create(config01);
    5. Config config02 = new Config();
    6. config02.useSingleServer().setAddress("redis://192.168.0.100:6380");
    7. RedissonClient redissonClient02 = Redisson.create(config02);
    8. Config config03 = new Config();
    9. config03.useSingleServer().setAddress("redis://192.168.0.100:6381");
    10. RedissonClient redissonClient03 = Redisson.create(config03);
    11. // 2.创建锁实例
    12. String lockName = "myLock";
    13. RLock lock01 = redissonClient01.getLock(lockName);
    14. RLock lock02 = redissonClient02.getLock(lockName);
    15. RLock lock03 = redissonClient03.getLock(lockName);
    16. // 3. 创建 RedissonRedLock
    17. RedissonRedLock redLock = new RedissonRedLock(lock01, lock02, lock03);
    18. try {
    19. boolean isLock = redLock.tryLock(10, 300, TimeUnit.SECONDS);
    20. if (isLock) {
    21. // 4.模拟业务处理
    22. System.out.println("处理业务逻辑");
    23. Thread.sleep(200 * 1000);
    24. }
    25. } catch (Exception e) {
    26. e.printStackTrace();
    27. } finally {
    28. //5.释放锁
    29. redLock.unlock();
    30. }
    31. redissonClient01.shutdown();
    32. redissonClient02.shutdown();
    33. redissonClient03.shutdown();

    此时每个 Redis 实例上锁的情况如下:

    可以看到每个实例上都获得了锁。

    4.3 延长锁时效

    最后,介绍一下 Redisson 的 WatchDog 机制,它可以用来延长锁时效,示例如下:

    1. Config config = new Config();
    2. // 1.设置WatchdogTimeout
    3. config.setLockWatchdogTimeout(30 * 1000);
    4. config.useSingleServer().setAddress("redis://192.168.0.100:6379");
    5. RedissonClient redissonClient = Redisson.create(config);
    6. // 2.创建锁实例
    7. RLock lock = redissonClient.getLock("myLock");
    8. try {
    9. //3.尝试获取分布式锁,第一个参数为等待时间
    10. boolean isLock = lock.tryLock(0, TimeUnit.SECONDS);
    11. if (isLock) {
    12. // 4.模拟业务处理
    13. System.out.println("处理业务逻辑");
    14. Thread.sleep(60 * 1000);
    15. System.out.println("锁剩余的生存时间:" + lock.remainTimeToLive());
    16. }
    17. } catch (Exception e) {
    18. e.printStackTrace();
    19. } finally {
    20. //5.释放锁
    21. lock.unlock();
    22. }
    23. redissonClient.shutdown();

    首先 Redisson 的 WatchDog 机制只会对那些没有设置锁超时时间的锁生效,所以我们这里调用的是两个参数的 tryLock() 方法:

    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;

    而不是包含超时时间的三个参数的 tryLock() 方法:

    1. boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException;
    2. 复制代码

    其次我们通过 config.setLockWatchdogTimeout(30 * 1000) 将 lockWatchdogTimeout 的值设置为 30000 毫秒(默认值也是 30000 毫秒)。此时 Redisson 的 WatchDog 机制会以 lockWatchdogTimeout 的 1/3 时长为周期(在这里就是 10 秒)对所有未设置超时时间的锁进行检查,如果业务尚未处理完成(也就是锁还没有被程序主动删除),Redisson 就会将锁的超时时间重置为 lockWatchdogTimeout 指定的值(在这里就是设置的 30 秒),直到锁被程序主动删除位置。因此在上面的例子中可以看到,不论将模拟业务的睡眠时间设置为多长,其锁都会存在一定的剩余生存时间,直至业务处理完成。

    反之,如果明确的指定了锁的超时时间 leaseTime,则以 leaseTime 的时间为准,因为 WatchDog 机制对明确指定超时时间的锁不会生效。

  • 相关阅读:
    09. 树莓派ASP.NET环境配置
    阿里云国际版忘记会员名或登录密码,怎么办?
    【计算机网络】你真的懂学校的校园网吗?
    django开发一个管理系统基于Python实现的高校宿舍管理系统
    关于城市旅游的HTML网页设计 HTML+CSS上海博物馆网站 dreamweaver作业静态HTML网页设计 html网页制作期末大作业
    Cadence Allegro PCB设计88问解析(二十) 之 Allegro中格点设置(一)
    【性能测试】JMeter:集合点,同步定时器的应用实例!
    log4net to remote web api interface
    Vue Router的使用
    【LeetCode】数组系列-双指针
  • 原文地址:https://blog.csdn.net/weixin_50966947/article/details/134269840