• noip模拟赛多校第八场 T3 遥控机器人 (最短路 + 技巧拆点)


    题面

    在这里插入图片描述

    简要题意:
            给你一个 n n n 个点 m m m 条边的图。边 i i i颜色 c i c_i ci。你可以选择一些边改变它们的颜色成为区间 [ 1 , m ] [1, m] [1,m] 中的任意颜色,改变一条边 i i i 一次的代价是 w i w_i wi。询问你能否在一些改变操作后使得可以从 1 1 1 号点,每次只经过当前点的 特殊边 到达 n n n。特殊边的定义是 对于当前点而言,特殊边的颜色在该点所有出边中有且仅出现一条。 如果可以,输出最小代价。否则输出 − 1 -1 1

    分析:

            凭感觉是一道最短路的题。

            首先有一个性质:因为颜色的区间与边数相同,所以如果要改变一条边,那么可以把它变成一个任何别的边都不会再变成的颜色。换言之, 如果要花费代价改变某一条边的颜色,那么可以把它变成无色,并且这样是最优的

            接下来我们考虑如果一条边 ( u , v ) (u, v) (u,v) 的颜色是 c c c,花费是 w w w。我们从 u u u v v v 经过它花费代价有几种情况:

            1. u u u 的出边中是 c c c 颜色的只有一条,那么代价是 0 0 0

            2. u u u 的出边中 c c c 颜色的边有多条,改变这条边的颜色至无色,花费是 w w w

            3. u u u 的出边中 c c c 颜色的边有多条,改变不改变它的颜色,改变其它边的颜色至无色。
                花费是 v a l u , c − w val_{u, c} - w valu,cw v a l u , c val_{u, c} valu,c 代表所有 u u u 的出边中颜色是 c c c 的边的代价之和。

            不难发现,情况 1 1 1 可以归到情况 3 3 3 中。

            我们考虑把这两种代价看做两种边权跑最短路会有什么问题:

            如果按照情况 3 3 3 u u u v v v,我们考虑会不会存在一个问题:按照情况 3 3 3 我们需要把其它颜色也为 c c c 的边都改成无色,那么把它变成无色但是却不记录会不会影响后面答案的计算呢?
    )

            蓝色点表示最优路径的点,红色的边表示情况 3 3 3 中染成无色的边,它们的颜色是 c c c。黑色的边表示最优路径的边。那么如果出现上图的情况(从 5 5 5 号点走到 1 1 1 号点),那么 2 2 2 号点到 1 1 1 号点似乎是不需要花费的,因为在从 4 4 4 号点到 3 3 3 号点的时候就把那条颜色为 c c c 的边染成了无色。但是我们按照上面的规则进行的话,如果从 2 2 2 3 3 3 还使用情况 3 3 3,显然会多算一个代价。

            但是深入思考一下,这种情况不会发生。因为这样的路径一定不是最优路径。如果按照上图的走法,那么 ( 2 , 4 ) (2,4) (2,4) ( 6 , 4 ) (6, 4) (6,4) ( 4 , 7 ) (4, 7) (4,7) 的代价都会被算。实际上如果我们直接选择路径 5 → 4 → 2 → 1 5 \to 4 \to 2 \to 1 5421,并且 ( 4 , 2 ) (4, 2) (4,2) 使用情况 2 2 2 ( 2 , 1 ) (2, 1) (2,1) 使用情况 3 3 3 肯定更加优秀。

            这也就意味着: 如果我们能够通过某种方式处理好情况 2 2 2 带来的影响(即把边染成无色的影响),那么按照上面的规则跑最短路就是对的

            如果按照情况 2 2 2 经过一条颜色为 c c c 的边 从 u u u v v v,那么 ( u , v ) (u, v) (u,v) 这条边颜色的改变可能会影响从 v v v k k k 经过一条颜色为 c c c 按照情况 3 3 3 所花费的代价。根据这个问题,我们考虑 拆点

            有一个很暴力的想法是我们把每一个点拆成 m + 1 m + 1 m+1 个点:若有三个点 a a a, b b b , c c c a a a b b b 经过一条颜色为 x x x 的边,当使用情况 2 2 2 的时候,可以从 a a a 走向 b x b_x bx,代价为 0 0 0 b x b_x bx必须继续沿着颜色x使用情况 3 3 3 走向其他点。每一个点的 0 0 0 状态表示 没有限制。这样我们就解决了维护信息的问题。但是复杂度好像有点问题。

            我们考虑实际上一个点没有必要开 m m m 个点,只需要对每个点开其存在的颜色数个点就行了。一条边能够提供给两个点分别提供 1 1 1 个点,所以总点数是 2 m + n 2m + n 2m+n。然后建图跑最短路即可。时间复杂度 O ( ( n + m ) l o g 2 ( n + m ) ) O((n + m)log_2(n + m)) O((n+m)log2(n+m))。常数有亿点大。

    CODE:

    #include//拆点   把点的状态拆一下 
    using namespace std;
    const int N = 1e5 + 10;
    const int M = 2e5 + 10;
    const int T = 2 * N + M * 2;
    typedef pair< int, int > PII;
    typedef long long LL;
    inline int read(){
    	int x = 0, f = 1; char c = getchar();
    	while(!isdigit(c)){if(c == '-') f = -1; c = getchar();}
    	while(isdigit(c)){x = (x << 1) + (x << 3) + (c ^ 48); c = getchar();}
    	return x * f;
    }
    int u, v, c;
    int n, m, head[T], ut[M], vt[M], ct[M], tot, len;//最多T个点
    bool vis[T];
    LL wt[M], dis[T], res, w; 
    map< PII, int > rk;
    map< PII, LL > val;
    struct edge{
    	int v, last;
    	LL w;
    }E[M * 8 + 10000];
    void add(int u, int v, LL w){
    	E[++len].v = v;
    	E[len].last = head[u];
    	E[len].w = w;
    	head[u] = len;
    }
    struct state{
    	int x; LL w;
    	friend bool operator < (state a, state b){
    		return a.w > b.w;
    	}
    };
    void dijkstra(int s){
    	priority_queue< state > q;
    	q.push((state){s, 0});
    	while(!q.empty()){
    		state u = q.top(); q.pop();
    		int x = u.x;
    		if(vis[x]) continue;
    		vis[x] = 1;
    		for(int i = head[x]; i; i = E[i].last){
    			int v = E[i].v; LL w = E[i].w;
    			if(dis[v] > dis[x] + w){
    				dis[v] = dis[x] + w;
    				q.push((state){v, dis[v]});
    			}
    		}
    	}
    }
    int main(){
    	n = read(), m = read();
    	for(int i = 1; i <= n; i++){
    		rk[make_pair(i, 0)] = ++tot;
    	}
    	for(int i = 1; i <= m; i++){
    		u = read(), v = read(); c = read(), w = 1LL * read();
    		if(!rk[make_pair(u, c)]) rk[make_pair(u, c)] = ++tot;
    		if(!rk[make_pair(v, c)]) rk[make_pair(v, c)] = ++tot;
            val[make_pair(u, c)] += w;
            val[make_pair(v, c)] += w;
            ut[i] = u, vt[i] = v, wt[i] = w, ct[i] = c;
    	}
    	for(int i = 1; i <= m; i++){
    		int u = ut[i], v = vt[i], c = ct[i], w = wt[i];
    		add(rk[make_pair(u, 0)], rk[make_pair(v, 0)], w);//改变颜色,不做限制 
    		add(rk[make_pair(u, 0)], rk[make_pair(v, c)], 0);//改变颜色,必须限制 
    		add(rk[make_pair(u, c)], rk[make_pair(v, 0)], val[make_pair(u, c)] - w);
    		add(rk[make_pair(u, 0)], rk[make_pair(v, 0)], val[make_pair(u, c)] - w);
    		add(rk[make_pair(v, 0)], rk[make_pair(u, 0)], w);//改变颜色,不做限制 
    		add(rk[make_pair(v, 0)], rk[make_pair(u, c)], 0);//改变颜色,必须限制 
    		add(rk[make_pair(v, c)], rk[make_pair(u, 0)], val[make_pair(v, c)] - w);
    		add(rk[make_pair(v, 0)], rk[make_pair(u, 0)], val[make_pair(v, c)] - w);
    	}
    	memset(dis, 0x3f, sizeof dis);
    	dis[rk[make_pair(1, 0)]] = 0;
    	dijkstra(rk[make_pair(1, 0)]);
    	res = dis[rk[make_pair(n, 0)]];
    	if(res == 0x3f3f3f3f3f3f3f3f) res = -1;
    	printf("%lld\n", res);
    	return 0;
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
  • 相关阅读:
    pycharm集成通义灵码
    Docker Compose 是什么
    RadioTransformer:用于视觉注意力引导疾病分类的级联全局焦点Transformer
    PHP基于原生GD库, 获取图片中文字颜色, 匹配稀有度
    surging 将推出社区版微服务平台
    Unity 动画性能和优化
    基于腾讯元器搭建前端小助手
    3D开发学习之笛卡尔坐标系
    单机版-redis(手动部署)
    数学建模值TOPSIS法及代码
  • 原文地址:https://blog.csdn.net/weixin_55851276/article/details/134250964