yolov8添加注意力机制是一个非常常见的操作,常见的操作直接将注意力机制添加至YOLOv8的某一层之后,这种改进特别常见。
示例如下:
新版yolov8添加注意力机制(以NAMAttention注意力机制为例)
YOLOv8添加注意力机制(ShuffleAttention为例)
知网上常见的添加注意力机制的论文均使用的上述方式。
下面展示一种将注意力机制融合至模块中的方法。
C2f模块融合注意力机制,而不是直接放置在某一层后面。
示例如下:
YOLOv8将注意力机制融合进入C2f模块(SE注意力机制为例)
以及本篇shuffleAttention注意力机制。
以下是一些常见的注意力机制实现的代码,具体看此贴。
常见注意力机制代码实现
Shuffle注意力机制,代码如下:
class ShuffleAttention(nn.Module):
def __init__(self, channel=512, reduction=16, G=8):
super().__init__()
self.G = G
self.channel = channel
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
self.sigmoid = nn.Sigmoid()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
@staticmethod
def channel_shuffle(x, groups):
b, c, h, w = x.shape
x = x.reshape(b, groups, -1, h, w)
x = x.permute(0, 2, 1, 3, 4)
# flatten
x = x.reshape(b, -1, h, w)
return x
def forward(self, x):
b, c, h, w = x.size()
# group into subfeatures
x = x.view(b * self.G, -1, h, w) # bs*G,c//G,h,w
# channel_split
x_0, x_1 = x.chunk(2, dim=1) # bs*G,c//(2*G),h,w
# channel attention
x_channel = self.avg_pool(x_0) # bs*G,c//(2*G),1,1
x_channel = self.cweight * x_channel + self.cbias # bs*G,c//(2*G),1,1
x_channel = x_0 * self.sigmoid(x_channel)
# spatial attention
x_spatial = self.gn(x_1) # bs*G,c//(2*G),h,w
x_spatial = self.sweight * x_spatial + self.sbias # bs*G,c//(2*G),h,w
x_spatial = x_1 * self.sigmoid(x_spatial) # bs*G,c//(2*G),h,w
# concatenate along channel axis
out = torch.cat([x_channel, x_spatial], dim=1) # bs*G,c//G,h,w
out = out.contiguous().view(b, -1, h, w)
# channel shuffle
out = self.channel_shuffle(out, 2)
return out
可以将以上注意力机制的代码放到ultralytics/nn/modules/conv.py目录的最后。
ShuffleAttention_Bottleneck和C2f_ShuffleAttention模块代码如下:
class ShuffleAttention_Bottleneck(nn.Module):
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
super().__init__()
c_ = int(c2 * e)
self.cv1 = Conv(c1, c_, k[0], 1)
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
self.se = ShuffleAttention(c2, 16, 8)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.se(self.cv2(self.cv1(x))) if self.add else self.se(self.cv2(self.cv1(x)))
class C2f_ShuffleAttention(nn.Module):
def __init__(self, c1, c2, shortcut = False, g = 1, n = 1, e = 0.5):
super().__init__()
self.c = int(c2 * e)
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1)
self.m = nn.ModuleList(ShuffleAttention_Bottleneck(self.c, self.c, shortcut, g, k=((3,3),(3,3)), e = 1.0) for _ in range(n))
def forward(self, x):
y = list(self.cv1(x).chunk(2,1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
def forward_split(self, x):
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
可以将以上ShuffleAttention_Bottleneck和C2f_ShuffleAttention模块的代码放到ultralytics/nn/modules/conv.py目录的最后。
在ultralytics/nn/modules/conv.py文件的最前面添加C2f_ShuffleAttention。
在ultralytics/nn/modules/ __ init__.py中,添加C2f_ShuffleAttention模块。
在ultralytics/nn/tasks.py中,在parse_model(d, ch, verbose=True)方法中,添加C2f_ShuffleAttention即可。
保持与C2f的调用一样。
创建模块:ultralytics/cfg/models/v8/yolov8n-C2f_ShuffleAttention.yaml,以yolov8n为例:修改后的模型如下:
# Ultralytics YOLO 🚀, GPL-3.0 license
# Parameters
nc: 1 # number of classes
depth_multiple: 0.33 # scales module repeats
width_multiple: 0.25 # scales convolution channels
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f_ShuffleAttention, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f_ShuffleAttention, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f_ShuffleAttention, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f_ShuffleAttention, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
也可以尝试不替换backbone中的C2f模块而替换head模块中的某些模块。
模型运行图片如下
没有报错