• 【考研数学】概率论与数理统计 —— 第七章 | 参数估计(2,参数估计量的评价、正态总体的区间估计)



    一、参数估计量的评价标准

    1.1 无偏性

    X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,,Xn) 为来自总体 X X X 的简单随机样本, θ \theta θ 为未知参数,设 θ ^ = φ ( X 1 , X 2 , ⋯   , X n ) \widehat{\theta}=\varphi(X_1,X_2,\cdots,X_n) θ =φ(X1,X2,,Xn) 为参数 θ \theta θ 的一个点估计量,若 E ( θ ^ ) = θ E(\widehat{\theta})=\theta E(θ )=θ ,称 θ ^ \widehat{\theta} θ 为参数 θ \theta θ 的无偏估计量。

    【例】 设总体 X X X 的密度函数为 f ( x ) = { 2 x / θ 2 0 < x < θ 0 e l s e f(x)=

    {2x/θ20<x<θ0else" role="presentation" style="position: relative;">{2x/θ20<x<θ0else
    f(x)={2x/θ200<x<θelse ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) 为来自总体 X X X 的简单随机样本。

    (1)求参数 θ \theta θ 的矩估计量;(2)求参数 θ \theta θ 的最大似然估计量;(3)矩估计量是否为无偏估计。

    解: (1) E ( X ) = ∫ − ∞ ∞ x f ( x ) d x = 2 θ / 3 E(X)=\int_{-\infty}^\infty xf(x)dx=2\theta/3 E(X)=xf(x)dx=2θ/3 ,令 2 θ / 3 = X ‾ 2\theta/3=\overline{X} 2θ/3=X ,则可得矩估计量 θ ^ = 3 X ‾ 2 . \widehat{\theta}=\frac{3\overline{X}}{2}. θ =23X. (2)构造似然函数 L ( θ ) = f ( x 1 ) f ( x 2 ) ⋯ f ( x n ) = 2 n θ 2 n x 1 x 2 ⋯ x n ( 0 < x i < θ , i = 1 , 2 , ⋯   , n ) . d ln ⁡ L d θ = − 2 n θ < 0. L(\theta)=f(x_1)f(x_2)\cdots f(x_n)=\frac{2^n}{\theta^{2n}}x_1x_2\cdots x_n(0L(θ)=f(x1)f(x2)f(xn)=θ2n2nx1x2xn(0<xi<θ,i=1,2,,n).dθdlnL=θ2n<0. 可知 L ( θ ) L(\theta) L(θ) θ \theta θ 的减函数,因此最大似然估计量 θ ^ = max ⁡ { X 1 , X 2 , ⋯   , X n } \widehat{\theta}=\max\{X_1,X_2,\cdots,X_n\} θ =max{X1,X2,,Xn}

    (3) E ( θ ^ ) = 3 / 2 ⋅ E ( X ‾ ) = 3 / 2 ⋅ 2 θ / 3 = θ E(\widehat{\theta})=3/2\cdot E(\overline{X})=3/2\cdot2\theta/3=\theta E(θ )=3/2E(X)=3/22θ/3=θ ,故是无偏估计量。

    1.2 有效性

    X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,,Xn) 为来自总体 X X X 的简单随机样本, θ \theta θ 为未知参数,设 θ ^ 1 , θ ^ 2 \widehat{\theta}_1,\widehat{\theta}_2 θ 1,θ 2 都是参数 θ \theta θ 的无偏估计量,若 D ( θ ^ 1 ) < D ( θ ^ 2 ) D(\widehat{\theta}_1)D(θ 1)<D(θ 2) ,称 θ ^ 1 \widehat{\theta}_1 θ 1 为更有效的参数估计量。

    1.3 一致性

    X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,,Xn) 为来自总体 X X X 的简单随机样本, θ \theta θ 为未知参数,设 θ ^ = φ ( X 1 , X 2 , ⋯   , X n ) \widehat{\theta}=\varphi(X_1,X_2,\cdots,X_n) θ =φ(X1,X2,,Xn) 为参数 θ \theta θ 的一个估计量,若对任意 ϵ > 0 \epsilon>0 ϵ>0 ,有 lim ⁡ n → ∞ P { ∣ θ ^ − θ ∣ < ϵ } = 1 \lim_{n\to\infty}P\{|\widehat{\theta}-\theta|<\epsilon\}=1 nlimP{θ θ<ϵ}=1 θ ^ \widehat{\theta} θ 作为 θ \theta θ 的估计量具有一致性(或相合性)。


    二、一个正态总体参数的双侧区间估计

    前面我们所学的两种方法为点估计法,即只能得到一个值,但实际上我们并非需要那么精确,况且点估计出来也不一定好,因此我们最好是估计一个区间范围。

    2.1 对参数 μ \mu μ 的双侧区间估计

    X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots ,X_n) (X1,X2,,Xn) 为来自总体 X X X 的简单随机样本, 0 < α < 1 0<\alpha<1 0<α<1 ,求参数的置信度为 1 − α 1-\alpha 1α 的双侧置信区间

    1. 参数 σ 2 \sigma^2 σ2 已知

    X ‾ \overline{X} X 标准化为标准正态分布,令其在 − z α 2 -z_{\alpha\over 2} z2α z α 2 z_{\alpha\over 2} z2α 内的概率为 1 − α 1-\alpha 1α,可求出置信区间为 ( X ‾ − σ n z α 2 , X ‾ + σ n z α 2 ) \bigg(\overline{X}-\frac{\sigma}{\sqrt{n}}z_{\alpha\over2},\overline{X}+\frac{\sigma}{\sqrt{n}}z_{\alpha\over2}\bigg) (Xn σz2α,X+n σz2α) 2. 参数 σ 2 \sigma^2 σ2 未知

    则利用 t t t 分布,即取 X ‾ − μ S n ∼ t ( n − 1 ) \frac{\overline{X}-\mu}{\frac{S}{\sqrt{n}}}\sim t(n-1) n SXμt(n1) 令其在 ( − t α 2 ( n − 1 ) , t α 2 ( n − 1 ) ) (-t_{\frac{\alpha}{2}}(n-1),t_{\frac{\alpha}{2}}(n-1)) (t2α(n1),t2α(n1)) 的概率为 1 − α 1-\alpha 1α ,可计算出置信区间为 ( X ‾ − S n t α 2 ( n − 1 ) , X ‾ + S n t α 2 ( n − 1 ) ) \bigg(\overline{X}-\frac{S}{\sqrt{n}}t_{\alpha\over2}(n-1),\overline{X}+\frac{S}{\sqrt{n}}t_{\alpha\over2}(n-1)\bigg) (Xn St2α(n1),X+n St2α(n1)) 此外还有对 σ 2 \sigma^2 σ2 的区间估计,汇总成下表:

    在这里插入图片描述

    三、一个正态总体的单侧置信区间

    其实单侧也就是双侧的区间取一端,如估计 μ \mu μ σ 2 \sigma^2 σ2 已知,单侧置信区间为: ( X ‾ − σ n z α 2 , + ∞ ) , ( − ∞ , X ‾ + σ n z α 2 ) \bigg(\overline{X}-\frac{\sigma}{\sqrt{n}}z_{\alpha\over2},+\infty\bigg),\bigg(-\infty,\overline{X}+\frac{\sigma}{\sqrt{n}}z_{\alpha\over2}\bigg) (Xn σz2α,+),(,X+n σz2α) 其余以此类推。

    四、两个正态总体的双侧置信区间

    汇总成表:

    在这里插入图片描述
    其中 S w = ( m − 1 ) S 1 2 + ( n − 1 ) S 2 2 m + n − 2 S_w=\frac{(m-1)S_1^2+(n-1)S_2^2}{m+n-2} Sw=m+n2(m1)S12+(n1)S22


    写在最后

    看了下大纲,对区间估计的概念和一个、两个正态总体的置信区间公式作了理解要求,后期抽时间记忆记忆。

  • 相关阅读:
    windows中超详细深度学习环境配置之安装显卡驱动、cuda、cudnn、pytorch、torchvision、pycharm
    如何在Qt中使用boost库
    基于Springboot实现社区维修平台管理系统演示【项目源码+论文说明】
    AH8691-60V降压至3.3V电源芯片:ESOP8封装解决方案
    【Python数据科学快速入门系列 | 04】Numpy四则运算、矩阵运算和广播机制的爱恨情仇
    用matlab做bp神经网络预测,matlab人工神经网络预测
    图像畸变与去畸变
    JavaWeb开发-06-SpringBootWeb-MySQL
    【每日训练】连续最大和
    【Android】实验二 Android GUI开发
  • 原文地址:https://blog.csdn.net/Douglassssssss/article/details/134125539