1.Matlab实现KOA-CNN-LSTM-selfAttention开普勒算法优化卷积长短期记忆神经网络融合自注意力多特征分类预测,多特征输入模型,运行环境Matlab2023b及以上;
2.基于开普勒算法(KOA)优化卷积长短期记忆神经网络(CNN-LSTM)结合自注意力机制(selfAttention)分类预测。2023年新算法KOA,MATLAB程序,多行变量特征输入,优化了学习率、卷积核大小及隐藏层单元数等。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图.
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
5.输出指标包括优化参数、精确度、召回率、精确率、F1分数。
[Order] = sort(PL_Fit); %% 对当前种群中的解的适应度值进行排序
%% 函数评估t时的最差适应度值
worstFitness = Order(SearchAgents_no); %% Eq.(11)
M = M0 * (exp(-lambda * (t / Tmax))); %% Eq.(12)
%% 计算表示太阳与第i个解之间的欧几里得距离R
for i = 1:SearchAgents_no
R(i) = 0;
for j = 1:dim
R(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2; %% Eq.(7)
end
R(i) = sqrt(R(i));
end
%% 太阳和对象i在时间t的质量计算如下:
for i = 1:SearchAgents_no
sum = 0;
for k = 1:SearchAgents_no
sum = sum + (PL_Fit(k) - worstFitness);
end
MS(i) = rand * (Sun_Score - worstFitness) / (sum); %% Eq.(8)
m(i) = (PL_Fit(i) - worstFitness) / (sum); %% Eq.(9)
end
%% 第2步:定义引力(F)
% 计算太阳和第i个行星的引力,根据普遍的引力定律:
for i = 1:SearchAgents_no
Rnorm(i) = (R(i) - min(R)) / (max(R) - min(R)); %% 归一化的R(Eq.(24))
MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MS
Mnorm(i) = (m(i) - min(m)) / (max(m) - min(m)); %% 归一化的m
Fg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6)
end
% a1表示第i个解在时间t的椭圆轨道的半长轴,
for i = 1:SearchAgents_no
a1(i) = rand * (T(i)^2 * (M * (MS(i) + m(i)) / (4 * pi * pi)))^(1/3); %% Eq.(23)
end
for i = 1:SearchAgents_no
% a2是逐渐从-1到-2的循环控制参数
a2 = -1 - 1 * (rem(t, Tmax / Tc) / (Tmax / Tc)); %% Eq.(29)
% ξ是从1到-2的线性减少因子
n = (a2 - 1) * rand + 1; %% Eq.(28)
a = randi(SearchAgents_no); %% 随机选择的解的索引
b = randi(SearchAgents_no); %% 随机选择的解的索引
rd = rand(1, dim); %% 按照正态分布生成的向量
r = rand; %% r1是[0,1]范围内的随机数
%% 随机分配的二进制向量
U1 = rd < r; %% Eq.(21)
O_P = Positions(i, :); %% 存储第i个解的当前位置
%% 第6步:更新与太阳的距离(第3、4、5在后面)
if rand < rand
% h是一个自适应因子,用于控制时间t时太阳与当前行星之间的距离
h = (1 / (exp(n * randn))); %% Eq.(27)
% 基于三个解的平均向量:当前解、迄今为止的最优解和随机选择的解
Xm = (Positions(b, :) + Sun_Pos + Positions(i, :)) / 3.0;
Positions(i, :) = Positions(i, :) .* U1 + (Xm + h .* (Xm - Positions(a, :))) .* (1 - U1); %% Eq.(26)
else
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229