神经网络机器翻译(NMT, neuro machine tranlation)是AIGC发展道路上的一个重要应用。正是对这个应用的研究,发展出了注意力机制,在此基础上产生了AIGC领域的霸主transformer。我们今天先把注意力机制这些东西放一边,介绍一个对机器翻译起到重要里程碑作用的模型:LSTM encoder-decoder模型(sutskever et al. 2014)。根据这篇文章的描述,这个模型不需要特别的优化,就可以取得超过其他NMT模型的效果,所以我们也来动手实现一下,看看是不是真的有这么厉害。
原文作者采用了4层LSTM模型,每层有1000个单元(每个单元有输入门,输出门,遗忘门和细胞状态更新共计4组状态),采用1000维单词向量,纯RNN部分,就有64M参数。同时,在encoder的输出,和decoder的输出后放一个长度为80000的softmax层(因为论文的输出字典长80000),用于softmax的参数量为320M。整个模型共计320M + 64M = 384M。该模型用了8GPU的服务器训练了10天。
模型大概长这样:
按照现在的算力价格,用8张4090的主机训练每小时要花20多块钱,训练一轮下来需要花费小5000,笔者当然没有这么土豪,所以我们会使用一个参数量小得多的模型,主要为了记录整个搭建过程使用到的工具链和技术。另外,由于笔者使用了一个预训练的词向量库,包含了中英文单词共计128万多条,其中中文90多万,英文30多万,要像论文中一样用一个超大的softmax来预测每个词的概率并不现实,因此先使用一个linear层再加上tanh来简化,加快训练过程,只求能看到收敛。使用tanh而不是其他激活性函数的原因是:经过测试,使用tanh收敛效果是最好的。
笔者的模型看起来像这样:
该模型的主要参数如下:
词向量维度:300
LSTM隐藏层个数:900
LSTM层数:4
linear层输入:900
linear层输出:300
模型参数个数如下为:
==========================================================================================
Layer (type:depth-idx) Output Shape Param #
==========================================================================================
Seq2Seq [1, 11, 300] --
├─Encoder: 1-1 [1, 300] --
│ └─LSTM: 2-1 [1, 10, 900] 23,788,800
│ └─Linear: 2-2 [1, 10, 300] 270,300
│ └─ReLU: 2-3 [1, 300] --
├─Decoder: 1-2 [1, 11, 300] --
│ └─LSTM: 2-4 [1, 11, 900] 23,788,800
│ └─Linear: 2-5 [1, 11, 300] 270,300
│ └─ReLU: 2-6 [1, 11, 300] --
==========================================================================================
Total params: 48,118,200
Trainable params: 48,118,200
Non-trainable params: 0
Total mult-adds (M): 500.11
==========================================================================================
Input size (MB): 0.02
Forward/backward pass size (MB): 0.20
Params size (MB): 192.47
Estimated Total Size (MB): 192.70
==========================================================================================
如果大家希望了解LSTM层的23,788,800个参数如何计算出来,可以参考pytorch源码 pytorch/torch/csrc/api/src/nn/modules/rnn.cpp中方法void RNNImplBase::reset()的实现。笔者如果日后有空也可能会写一写。
先说语料,NMT需要大量的平行语料,语料可以从这里获取。另外有个语料天涯网站大全分享给大家。
首先需要对句子进行分词,中英文都需要做分词。中文分词工具本例采用jieba,可直接安装。
$ pip install jieba
...
$ python
Python 3.11.6 (tags/v3.11.6:8b6ee5b, Oct 2 2023, 14:57:12) [MSC v.1935 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> for token in jieba.cut("我爱踢足球!", cut_all=False):
... print(token)
...
我
爱
踢足球
!
英文分词采用nltk,安装之后,需要下载一个分词模型。
$ pip install nltk
...
$ python
Python 3.11.6 (tags/v3.11.6:8b6ee5b, Oct 2 2023, 14:57:12) [MSC v.1935 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import nltk
>>> nltk.download("punkt")
...
>>> from nltk import word_tokenize
>>> word_tokenize('i love you')
['i', 'love', 'you']
国内有墙,一般下载不了,所以可以到这里找到punkt文件并下载,解压到~/nltk_data/tokenizers/下边。
import xml.etree.ElementTree as ET
class TmxHandler():
def __init__(self):
self.tag=None
self.lang=None
self.corpus={}
def handleStartTu(self, tag):
self.tag=tag
self.lang=None
self.corpus={}
def handleStartTuv(self, tag, attributes):
if self.tag == 'tu':
if attributes['{http://www.w3.org/XML/1998/namespace}lang']:
self.lang=attributes['{http://www.w3.org/XML/1998/namespace}lang']
else:
raise Exception('tuv element must has a xml:lang attribute')
self.tag = tag
else:
raise Exception('tuv element must go under tu, not ' + tag)
def handleStartSeg(self, tag, elem):
if self.tag == 'tuv':
self.tag = tag
if self.lang:
if elem.text:
self.corpus[self.lang]=elem.text
else:
raise Exception('lang must not be none')
else:
raise Exception('seg element must go under tuv, not ' + tag)
def startElement(self, tag, attributes, elem):
if tag== 'tu':
self.handleStartTu(tag)
elif tag == 'tuv':
self.handleStartTuv(tag, attributes)
elif tag == 'seg':
self.handleStartSeg(tag, elem)
def endElem(self, tag):
if self.tag and self.tag != tag:
raise Exception(self.tag + ' could not end with ' + tag)
if tag == 'tu':
self.tag=None
self.lang=None
self.corpus={}
elif tag == 'tuv':
self.tag='tu'
self.lang=None
elif tag == 'seg':
self.tag='tuv'
def parse(self, filename):
for event, elem in ET.iterparse(filename, events=('start','end')):
if event == 'start':
self.startElement(elem.tag, elem.attrib, elem)
elif event == 'end':
if elem.tag=='tu':
yield self.corpus
self.endElem(elem.tag)
from gensim.models import KeyedVectors
import torch
import jieba
from nltk import word_tokenize
import numpy as np
class WordEmbeddingLoader():
def __init__(self):
pass
def load(self, fname):
self.model = KeyedVectors.load_word2vec_format(fname)
def get_embeddings(self, word:str):
if self.model:
try:
return self.model.get_vector(word)
except(KeyError):
return None
else:
return None
def get_scentence_embeddings(self, scent:str, lang:str):
embeddings = []
ws = []
if(lang == 'zh'):
ws = jieba.cut(scent, cut_all=False)
elif lang == 'en':
ws = word_tokenize(scent)
else:
raise Exception('Unsupported language ' + lang)
for w in ws:
embedding = self.get_embeddings(w.lower())
if embedding is None:
embedding = np.zeros(self.model.vector_size)
embedding = torch.from_numpy(embedding).float()
embeddings.append(embedding.unsqueeze(0))
return torch.cat(embeddings, dim=0)
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, device, embeddings=300, hidden_size=600, num_layers=4):
super().__init__()
self.device = device
self.hidden_layer_size = hidden_size
self.n_layers = num_layers
self.embedding_size = embeddings
self.lstm = nn.LSTM(embeddings, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, embeddings)
self.tanh = nn.Tanh()
# init weights
for name, param in self.lstm.named_parameters():
if 'bias' in name:
nn.init.constant_(param, 0.0)
elif 'weight' in name:
nn.init.xavier_uniform_(param,gain=0.02)
nn.init.xavier_uniform_(self.linear.weight.data,gain=0.25)
def forward(self, x):
# x: [batch size, seq length, embeddings]
# lstm_out: [batch size, x length, hidden size]
lstm_out, (hidden, cell) = self.lstm(x)
# linear input is the lstm output of the last word
lineared = self.linear(lstm_out[:,-1,:].squeeze(1))
out = self.tanh(lineared)
# hidden: [n_layer, batch size, hidden size]
# cell: [n_layer, batch size, hidden size]
return out, hidden, cell
import torch.nn as nn
class Decoder(nn.Module):
def __init__(self, device, embedding_size=300, hidden_size=900, num_layers=4):
super().__init__()
self.device = device
self.hidden_layer_size = hidden_size
self.n_layers = num_layers
self.embedding_size = embedding_size
self.lstm = nn.LSTM(embedding_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, embedding_size)
self.tanh = nn.Tanh()
# init parameter
for name, param in self.lstm.named_parameters():
if 'bias' in name:
nn.init.constant_(param, 0.0)
elif 'weight' in name:
nn.init.xavier_uniform_(param,gain=0.02)
nn.init.xavier_uniform_(self.linear.weight.data,gain=0.25)
def forward(self, x, hidden_in, cell_in):
# x: [batch_size, x length, embeddings]
# hidden: [n_layers, batch size, hidden size]
# cell: [n_layers, batch size, hidden size]
# lstm_out: [seq length, batch size, hidden size]
lstm_out, (hidden,cell) = self.lstm(x, (hidden_in, cell_in))
# prediction: [seq length, batch size, embeddings]
prediction=self.relu(self.linear(lstm_out))
return prediction, hidden, cell
接下来把encoder和decoder串联起来。
import torch
import encoder as enc
import decoder as dec
import torch.nn as nn
import time
class Seq2Seq(nn.Module):
def __init__(self, device, embeddings, hiddens, n_layers):
super().__init__()
self.device = device
self.encoder = enc.Encoder(device, embeddings, hiddens, n_layers)
self.decoder= dec.Decoder(device, embeddings, hiddens, n_layers)
self.embeddings = self.encoder.embedding_size
assert self.encoder.n_layers == self.decoder.n_layers, "Number of layers of encoder and decoder must be equal!"
assert self.decoder.hidden_layer_size==self.decoder.hidden_layer_size, "Hidden layer size of encoder and decoder must be equal!"
# x: [batches, x length, embeddings]
# x is the source scentences
# y: [batches, y length, embeddings]
# y is the target scentences
def forward(self, x, y):
# encoder_out: [batches, n_layers, embeddings]
# hidden, cell: [n layers, batch size, embeddings]
encoder_out, hidden, cell = self.encoder(x)
# use encoder output as the first word of the decode sequence
decoder_input = torch.cat((encoder_out.unsqueeze(0), y), dim=1)
# predicted: [batches, y length, embeddings]
predicted, hidden, cell = self.decoder(decoder_input, hidden, cell)
return predicted
def do_train(model:Seq2Seq, train_set, optimizer, loss_function):
step = 0
model.train()
# seq: [seq length, embeddings]
# labels: [label length, embeddings]
for seq, labels in train_set:
step = step + 1
# ignore the last word of the label scentence
# because it is to be predicted
label_input = labels[:-1].unsqueeze(0)
# seq_input: [1, seq length, embeddings]
seq_input = seq.unsqueeze(0)
# y_pred: [1, seq length + 1, embeddings]
y_pred = model(seq_input, label_input)
# single_loss = loss_function(y_pred.squeeze(0), labels.to(self.device))
single_loss = loss_function(y_pred.squeeze(0), labels)
optimizer.zero_grad()
single_loss.backward()
optimizer.step()
print_steps = 100
if print_steps != 0 and step%print_steps==1:
print(f'[step: {step} - {time.asctime(time.localtime(time.time()))}] - loss:{single_loss.item():10.8f}')
def train(device, model, embedding_loader, corpus_fname, batch_size:int, batches: int):
reader = corpus_reader.TmxHandler()
loss = torch.nn.MSELoss()
# summary(model, input_size=[(1, 10, 300),(1,10,300)])
optimizer = torch.optim.Adam(model.parameters())
generator = reader.parse(corpus_fname)
for _b in range(batches):
batch = []
try:
for _c in range(batch_size):
try:
corpus = next(generator)
if 'en' in corpus and 'zh' in corpus:
en = embedding_loader.get_scentence_embeddings(corpus['en'], 'en').to(device)
zh = embedding_loader.get_scentence_embeddings(corpus['zh'], 'zh').to(device)
batch.append((en,zh))
except (StopIteration):
break
finally:
print(time.localtime())
print("batch: " + str(_b))
do_train(model, batch, optimizer, loss)
torch.save(model, "./models/seq2seq_" + str(time.time()))
if __name__=="__main__":
# device = torch.device('cuda')
device = torch.device('cpu')
embeddings = 300
hiddens = 900
n_layers = 4
embedding_loader = word2vec.WordEmbeddingLoader()
print("loading embedding")
# a full vocabulary takes too long to load, a baby vocabulary is used for demo purpose
embedding_loader.load("../sgns.merge.word.toy")
print("load embedding finished")
# if there is an existing model, load the existing model from file
# model_fname = "./models/_seq2seq_1698000846.3281412"
model_fname = None
model = None
if not model_fname is None:
print('loading model from ' + model_fname)
model = torch.load(model_fname, map_location=device)
print('model loaded')
else:
model = Seq2Seq(device, embeddings, hiddens, n_layers).to(device)
train(device, model, embedding_loader, "../News-Commentary_v16.tmx", 1000, 100)
让我们先来体验一下CPU的龟速训练。下图是每100句话的训练输出。每次打印的间隔大约为2-3分钟。
[step: 1 - Thu Oct 26 05:14:13 2023] - loss:0.00952744
[step: 101 - Thu Oct 26 05:17:11 2023] - loss:0.00855174
[step: 201 - Thu Oct 26 05:20:07 2023] - loss:0.00831730
[step: 301 - Thu Oct 26 05:23:09 2023] - loss:0.00032693
[step: 401 - Thu Oct 26 05:25:55 2023] - loss:0.00907284
[step: 501 - Thu Oct 26 05:28:55 2023] - loss:0.00937218
[step: 601 - Thu Oct 26 05:32:00 2023] - loss:0.00823146
如果把main函数的第一行中的"cpu"改成“cuda”,则可以使用显卡进行训练。笔者使用的是一张GTX1660显卡,打印间隔缩短为15秒。
[step: 1 - Thu Oct 26 06:38:45 2023] - loss:0.00955237
[step: 101 - Thu Oct 26 06:38:50 2023] - loss:0.00844441
[step: 201 - Thu Oct 26 06:38:56 2023] - loss:0.00820994
[step: 301 - Thu Oct 26 06:39:01 2023] - loss:0.00030389
[step: 401 - Thu Oct 26 06:39:06 2023] - loss:0.00896622
[step: 501 - Thu Oct 26 06:39:11 2023] - loss:0.00929985
[step: 601 - Thu Oct 26 06:39:17 2023] - loss:0.00813591
训练的损失值显得有些离散(如下图)。
我们可以对上边的训练结果用一个滑动窗口进行平滑处理,得到下边的图形。
通过这张图可以看到明显的收敛过程。这是使用了adam优化器的结果,adam是一个现代优化器,对广泛机器学习任务性能都优于一般优化器。如果我们使用普通的SGD优化器,会怎么样呢?
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
使用SGD优化器之后的训练损失值:
优化效果肉眼可见地变差了。
通过调整模型中的其他地方(比如激活函数、各种超参等),也可能使优化效果获得明显的改善或者变差。例如笔者发现用tanh作为激活函数的效果比relu,sigmoid等效果更好。