• CNN特征可视化相关论文


    Learning Deep Features for Discriminative Localization

    https://arxiv.org/pdf/1512.04150.pdf

    Top-down Neural Attention by Excitation Backprop

    https://arxiv.org/pdf/1608.00507.pdf

    Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization

    https://arxiv.org/pdf/1610.02391.pdf https://github.com/ramprs/grad-cam

    Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks

    https://arxiv.org/pdf/1710.11063.pdf

    Tell Me Where to Look: Guided Attention Inference Network

    https://arxiv.org/pdf/1802.10171.pdf

    CNN Fixations: An unraveling approach to visualize the discriminative image regions

    https://arxiv.org/pdf/1708.06670.pdf

    LEARNING HOW TO EXPLAIN NEURAL NETWORKS: PATTERNNET AND PATTERNATTRIBUTION

    https://arxiv.org/pdf/1705.05598.pdf

    Object Region Mining with Adversarial Erasing: A Simple Classification to Semantic Segmentation Approach

    https://arxiv.org/pdf/1703.08448.pdf

    Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers

    https://arxiv.org/pdf/1604.00825.pdf

    On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation

    https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0130140&type=printable

    Mining Objects: Fully Unsupervised Object Discovery and Localization From a Single Image

    https://arxiv.org/pdf/1902.09968.pdf

    weakly supervised object detections

    C-WSL: Count-guided Weakly Supervised Localization

    https://arxiv.org/pdf/1711.05282.pdf

    Improved Techniques for the Weakly-Supervised Object Localization

    https://arxiv.org/pdf/1802.07888.pdf

    ProNet: Learning to Propose Object-specific Boxes for Cascaded Neural Networks

    https://arxiv.org/pdf/1511.03776.pdf

    Weakly Supervised Region Proposal Network and Object Detection http://openaccess.thecvf.com/content_ECCV_2018/papers/Peng_Tang_Weakly_Supervised_Region_ECCV_2018_paper.pdf

    Saliency Guided End-to-End Learning for Weakly Supervised Object Detection

    https://www.ijcai.org/proceedings/2017/0285.pdf

    Collaborative Learning for Weakly Supervised Object Detection

    https://www.ijcai.org/proceedings/2018/0135.pdf

    Training object class detectors with click supervision

    http://calvin.inf.ed.ac.uk/wp-content/uploads/Publications/papadopoulos17cvpr.pdf

    Seed, Expand, Constrain: Three Principles for Weakly-Supervised Image Segmentation

    https://arxiv.org/pdf/1603.06098.pdf

    Weakly Supervised Instance Segmentation using Class Peak Response

    https://arxiv.org/pdf/1804.00880.pdf

    博士,担任《Mechanical System and Signal Processing》审稿专家,担任
    《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》等EI期刊审稿专家,担任《计算机科学》,《电子器件》 , 《现代制造过程》 ,《船舶工程》 ,《轴承》 ,《工矿自动化》 ,《重庆理工大学学报》 ,《噪声与振动控制》 ,《机械传动》 ,《机械强度》 ,《机械科学与技术》 ,《机床与液压》,《声学技术》,《应用声学》,《石油机械》,《西安工业大学学报》等中文核心审稿专家。
    擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

  • 相关阅读:
    GAN论文阅读笔记(9)—— Dual-path Image Inpainting with Auxiliary GAN Inversion
    面试经典-MySQL篇
    线性代数 化简矩阵和零空间矩阵
    一个普通java程序员的10年...泪奔 o(╥﹏╥)o o(╥﹏╥)o
    LeetCode-101-对称二叉树
    解决android中 ExifInterface.setAttribute()无效问题
    树莓派图像处理基础知识
    【深入了解操作系统进程:它们的角色、管理和重要性】
    springboot项目开发实战
    Java学习笔记 --- 注解
  • 原文地址:https://blog.csdn.net/weixin_39402231/article/details/134066269