题目链接:https://leetcode.cn/problems/all-paths-from-source-to-target/
思路:求从0到n-1的所有路径,终止条件是当前节点为n-1。本题图的结构是group[][],group[x]表示x节点所能到达的所有节点的集合,深度优先做本题会一路向下搜索,到头后回溯。
class Solution {
List<List<Integer>> arrayLists = new ArrayList<>();
List<Integer> list = new ArrayList<>();
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
list.add(0);
dfs(graph, 0);
return arrayLists;
}
void dfs(int[][] graph, int cur) {
if (cur == graph.length-1) {
arrayLists.add(new ArrayList<>(list));
return;
}
for (int i = 0; i < graph[cur].length; i++) {
list.add(graph[cur][i]);
dfs(graph, graph[cur][i]);
list.remove(list.size()-1);
}
}
}
题目链接:https://leetcode.cn/problems/number-of-islands/
深搜:当前节点为1时岛屿数加1,然后把当前节点设置为0,并从当前节点开始进行上下左右四个方向的深度搜索,只要没越界,不是0,那就是相连的就都设置为0,直到递归结束,然后外层遍历开始寻找下一个为1的岛屿。
class Solution {
public int numIslands(char[][] grid) {
int num = 0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == '1') {
num++;
dfs(grid, i, j);
}
}
}
return num;
}
void dfs(char[][] grid, int x, int y) {
if (x < 0 || x >= grid.length || y < 0 || y >= grid[0].length || grid[x][y] == '0'){
return;
}
grid[x][y] = '0';
// 按照上下左右四个方向深度优先遍历
dfs(grid, x-1, y);
dfs(grid, x+1, y);
dfs(grid, x, y-1);
dfs(grid, x, y+1);
}
}
广搜:广度优先需要额外有一个标记数组和队列,如果当前节点未遍历过,且为1,进行广度优先搜索,入队,出队,每个出队节点只搜索4个位置,即当前节点是上下左右,只要没超范围而且是1就可以入队,入队后要进行标记,直到该次广搜结束,岛屿数量加1.
class Solution {
// 上下左右
int[][] move = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
boolean[][] visited;
public int numIslands(char[][] grid) {
int num = 0;
visited = new boolean[grid.length][grid[0].length];
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (!visited[i][j] && grid[i][j] == '1') {
bfs(grid, i, j);
num++;
}
}
}
return num;
}
void bfs(char[][] grid, int x, int y) {
Deque<int[]> queue = new LinkedList<>();
queue.offer(new int[]{x, y});
visited[x][y] = true;
while (!queue.isEmpty()) {
int[] cur = queue.poll();
int m = cur[0], n = cur[1];
for (int i = 0; i < move.length; i++) {
int nextX = m + move[i][0];
int nextY = n + move[i][1];
if (nextX < 0 || nextX >= grid.length || nextY < 0 || nextY >= grid[0].length) continue;
if (!visited[nextX][nextY] && grid[nextX][nextY] == '1'){
queue.offer(new int[]{nextX, nextY});
visited[nextX][nextY] = true;
}
}
}
}
}