• 【电路笔记】-平均电压和均方根电压(RMS Voltage)


    平均电压和均方根电压(RMS Voltage)

    1、概述

    在 DC 状态下,只能对电压值进行一种定义,该值是明确的,并且由参考值 0 V 与 DC 信号的平线图之间的差异确定。然而,在 AC 状态下, 仅提及一个电压值可能会导致混乱。 从一个简单的正弦波形,我们至少可以列出四种不同的电压定义:

    在这里插入图片描述

    图 1:峰值(Peak Value)、平均值(Average Value)和RMS(均方根值)

    峰值(Peak Value)对应于参考值(即交流信号振荡的值)与信号最大值之间的差值。 峰峰值是峰值乘以因子2,它对应于信号的总垂直宽度。

    在图1中,我们还用红色突出显示了平均值和RMS值,这是我们将重点关注的本文中的两节将分别介绍平均值和RMS值,我们将了解它们是如何定义的,如何确定它们,最后我们将了解 RMS 值的特殊之处。

    2、平均电压

    对于基本的对称正弦波、三角波、方波或锯齿波(参见图 2 和交流波形教程),很难说清楚平均电压值,我们将在下面标记 A。 事实上,这些类型的信号在其周期的一半期间为正,在另一半期间为负。 换句话说,信号 50% 的时间位于水平轴上方,50% 的时间位于水平轴下方。根据该观察,很容易理解,如果我们考虑整个周期上任何这些信号的平均值,则为 等于 0,无论峰值如何,因此不相关。

    在这里插入图片描述

    图 2:基本正弦波、三角波、方波和锯齿波

    我们可以通过解释如何计算平均值来证明这个结果。 对于有限的一组值,平均过程包括将所有值(V1、V2、V3…)相加,然后除以该组的基数 N(该组中有多少个值):

    在这里插入图片描述

    然而,对于模拟信号来说,不可能简单地对信号在一个周期内获取的所有瞬时值(也称为中坐标)求和,因为存在无穷大。 我们不使用求和,而是使用积分运算:

    在这里插入图片描述

    公式 1:整个周期内的交流信号 V(t) 的平均值

    对于如图 1 所示的基本波形,我们可以看到该公式的第一项和第二项相等但符号相反,因此平均值等于 0。

    为了使这些信号的平均值有意义,我们更愿意分别考虑半个正周期和半个负周期,它们的一些值分别在下图 3 中以红色和绿色突出显示:

    在这里插入图片描述

    图 3:正弦波形的正半周期(红色)和负半周期(绿色)的一些瞬时值

    与公式 1 类似,我们可以分别定义正半周期 (A+) 和负半周期 (A–) 的平均值:

    在这里插入图片描述

    公式3:正 (+) 和负 (-) 半周期的交流信号 V(t) 的平均值

    A + A_+ A+ A – A_– A的值取决于我们正在处理的信号及其各自的峰值 ( V p V_p Vp)。 我们在下面列出了绝对值 |A| 最常见的基本和对称交流信号的 A + A_+ A+

  • 相关阅读:
    dubbo是如何实现可扩展的?(二)
    Redis常用指令汇总
    12┃音视频直播系统之 WebRTC 实现1对1直播系统实战
    【通信】基于MVDR LCEC GSC PCI MWF EC PCA_MVB多种算法实现自适应波束生成
    webAPI学习大纲整理(一)
    【xxl-job】分布式任务调度中心详解
    systemverilog学习 ---- 类(class)一
    moviepy处理手机端图片旋转问题
    微信小程序中使用Behavior混入
    ES6——ES6语法知识之 let 和 const 的区别以及解构赋值
  • 原文地址:https://blog.csdn.net/wujuxKkoolerter/article/details/134019971