题目:
"""
题目描述:
屈小原希望你能帮他求出一块地图中学校的面积。地图由nxm个方格组成,每个方格中都有一个小写的英文字母,如果该方格为学校所属,那么该方格必定是一段连续的ctgu的组成部分。从一个特定的字符开始,可以向上、下、左、右四个方向移动到相邻的方格。如果按照这种方式,能够从一个字符按顺序走到另一个字符,形成指定的字符串序列(在这个情况下是“ctgu”),那么这些方格被认为是连续的,即它们是学校的一部分。
输入:
第一行包含两个整数n,m(1
输出:
对于每组测试数据,输出学校所占的方格数目。
样例1:
4 4
cbug
tgtc
gutc
cgtu
样例输出:
7
"""
代码:
- """
- 思路:深度优先搜索(DFS)
- """
- N = 1000 # 设置二维数组的最大维度。预分配空间
- # 在绝大多数情况下,上下左右移动的坐标变化确实应该是 (0, 1)、(0, -1)、(1, 0) 和 (-1, 0)。
- dx = [0, 0, 1, -1] # 定义了在x方向上的四个可能的移动(上下左右)
- dy = [1, -1, 0, 0] # 定义了在y方向上的四个可能的移动
- ctgu = "ctgu" # 目标字符串
- # 初始化一个二维字符数组s,用于存储输入的字符数据
- s = [['' for _ in range(N)] for _ in range(N)]
- # 初始化一个二维访问数组vis,用于标记某个位置是否被访问过
- vis = [[0 for _ in range(N)] for _ in range(N)]
-
-
- def dfs(x, y, stk):
- u = len(stk) # 获取当前堆栈的大小
- if u == 4: # 如果堆栈大小为4,标记堆栈中所有位置为已访问,并终止搜索
- for i in range(4):
- # 元组,stk[i][0]表示第i个位置的x坐标,stk[i][1]表示第i个位置的y坐标
- vis[stk[i][0]][stk[i][1]] = 1
- return
-
- for i in range(4): # 循环遍历四个可能的方向
- tx = x + dx[i] # 计算新的x位置
- ty = y + dy[i] # 计算新的y位置
- # 检查新位置是否在边界内,堆栈大小是否小于目标字符串的长度,和新位置的字符是否匹配目标字符串的当前字符
- if 0 <= tx < n and 0 <= ty < m and u < len(ctgu) and s[tx][ty] == ctgu[u]:
- # 如果满足条件,将新位置元组(tx, ty)添加到堆栈中
- stk.append((tx, ty))
- dfs(tx, ty, stk) # 递归调用DFS函数
- stk.pop() # 回溯:从堆栈中弹出最后一个位置 返回的是地图坐标
-
-
- n, m = map(int, input().split()) # 输入n和m的值
- for i in range(n):
- s[i] = list(input()) # 将输入的字符串转换为字符列表,并赋值给s数组的对应行
- for i in range(n):
- for j in range(m):
- stk = [] # 初始化一个空堆栈
- dfs(i, j, stk) # 从位置(i, j)开始执行DFS
-
- ans = 0 # 初始化答案变量为0
- for i in range(n):
- for j in range(m):
- if vis[i][j]: # 如果位置(i, j)被访问过,增加答案变量
- ans += 1
- print(ans) # 输出最终答案