本文参考《深入理解Java虚拟机》一书,本文主要介绍几个经典的垃圾收集器:Serial、ParNew、parallelScavenge、CMS、Serial Old、Parallel Old、G1
本系列其他文章链接:
JVM(Java Virtual Machine)内存模型篇
JVM(Java Virtual Machine)垃圾收集算法篇
JVM(Java Virtual Machine)G1收集器篇
如果说收集算法是内存回收的方法论,那垃圾收集器就是内存回收的实践者。下图展示了7种不同的分点收集器,如果两个收集器之间存在连线,就说明它们之间可以搭配使用,图中收集器所处的区域,则表示他是属于新生代收集器抑或是老年代收集器。
Serial收集器可以说是远古时期的收集器,它是一个单线程、标记-复制算法收集器,,但它的“单线程”不仅仅是指只会使用一个处理器或一条收集线程去处理垃圾收集
工作,更重要的是强调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束
。
暂停其他线程被称为:“STW(Stop the world)”,对于STW,就像你在房间里干大事,你老妈要进来打扫卫生,你也得乖乖到某个地方暂时待着等她收拾完
下图是Serial/Serial Old收集器运行过程:
Serial收集器在单核或者核心数比较少的系统中,Serial收集集由于没有线程交换的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。
ParNew收集器实质上是Serial的多线程并行版本。除了是使用多线程收集垃圾外,其他收集算法、控制参数、STW、对象分配规则、回收策略等都和Serial一样。下图是ParNew/Serial Old的收集运行图:
ParNew默认开启线程数与处理器核心数量相同
ParNew 是一个低延迟、标记-复制算法的垃圾收集器,与后面会介绍的CMS收集器属于同一个类型,所以ParNew和CMS是可以互相搭配使用的,但是对于CMS来说,只有ParNew或者Serial能与它一起工作,其它收集器都不行。
Parallel Scavenge收集器也是一款新生代、并行、标记-复制算法的收集器,相比于其他垃圾收集器关注低延时,这款关注的是 “吞吐量”
如果虚拟机完成某个任务,用户代码+垃圾收集 == 100分钟,其中垃圾收集花掉1分钟,那么吞吐量就是99%。
低延时: 适合于用户交互或者需要保证服务响应质量的程序,良好的响应可以提升用户体验。
高吞吐: 可以高效率地利用处理器资源,尽快完成程序的运算任务,主要适合后台运算而不太需要太多交互的分析任务
所以由于定位不同,Parallel Scavenge无法和追求低延时的垃圾收集器合作
Serial Old收集器是Serial的老年代版本,收集算法上使用的是标记-整理算法。
当然他也可以和Parallel Scavenge一起使用,除此之外,它也是CMS的备用方案,当CMS回收失败的时候,就需要启动Serial Old来进行垃圾收集了。
Parallel Old是Parallel Scavenge的老年代版本,自然也是以吞吐量为目标,使用的是标记-整理算法。Parallel Scavenge/Parallel Old的收集流程
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器,这个算法是使用的标记-清理算法
它的运作过程稍微复杂一点,包括下面四个步骤:
其中初始标记、重新标记这两个步骤还是会经历STW,但是时间非常短
下图为收集过程图:
CMS虽然并不会导致用户线程的停顿,但却也会一定程度上降低应用程序效率,毕竟也分配一部分资源出去了。默认的CMS默认启动的回收线程数是(处理器核心数量+3)/4。
为了高效率,自然有会在内存空间上有所牺牲,CMS无法处理“浮动垃圾”,也就是在并发标记和并发清理的过程中产生的新垃圾,这些垃圾只能留到下一次老年代发生垃圾收集才能被回收。除此之外,CMS使用标记-清理算法也会导致内存碎片问题。
因此CMS收集器就必须为老年代预留一些空间来暂时存放这些“浮动垃圾”,当CMS运行期间预留的内存无法满足程序分配新对象,就会出现以一次“并发失败”,这时候就会使用上面提到的Serial Old这个备用方案,对老年代进行一次彻底的清理,且将内存碎片问题解决。(Serial Old为标记整理算法,CMS为标记清理算法)
虽然如此弊端,但是不影响CMS是一款优秀的垃圾收集器,是目前任然应用在大多数基于浏览器B/S系统的服务端上。
如果要讲述这个收集器篇幅过大,将来有时间再补上(并非偷懒T_T)
G1收集器文章链接如下:
JVM(Java Virtual Machine)G1收集器篇