📕我是廖志伟,一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作者、产品软文创造者、技术文章评审老师、问卷调查设计师、个人社区创始人、开源项目贡献者。🌎跑过十五公里、徒步爬过衡山、🔥有过三个月减肥20斤的经历、是个喜欢躺平的狠人。
📘拥有多年一线研发和团队管理经验,研究过主流框架的底层源码(Spring、SpringBoot、Spring MVC、SpringCould、Mybatis、Dubbo、Zookeeper),消息中间件底层架构原理(RabbitMQ、RockerMQ、Kafka)、Redis缓存、MySQL关系型数据库、 ElasticSearch全文搜索、MongoDB非关系型数据库、Apache ShardingSphere分库分表读写分离、设计模式、领域驱动DDD、Kubernetes容器编排等。🎥有从0到1的高并发项目经验,利用弹性伸缩、负载均衡、报警任务、自启动脚本,最高压测过200台机器,有着丰富的项目调优经验。
希望各位读者大大多多支持用心写文章的博主,现在时代变了,信息爆炸,酒香也怕巷子深,博主真的需要大家的帮助才能在这片海洋中继续发光发热,所以,赶紧动动你的小手,点波关注❤️,点波赞👍,点波收藏⭐,甚至点波评论✍️,都是对博主最好的支持和鼓励!
📥博主的人生感悟和目标
- 🍋程序开发这条路不能停,停下来容易被淘汰掉,吃不了自律的苦,就要受平庸的罪,持续的能力才能带来持续的自信。我本是是一个很普通程序员,放在人堆里,除了与生俱来的盛世美颜,就剩180的大高个了,就是我这样的一个人,默默写博文也有好多年了。
- 📺有句老话说的好,牛逼之前都是傻逼式的坚持,希望自己可以通过大量的作品、时间的积累、个人魅力、运气、时机,可以打造属于自己的技术影响力。
- 💥内心起伏不定,我时而激动,时而沉思。我希望自己能成为一个综合性人才,具备技术、业务和管理方面的精湛技能。我想成为产品架构路线的总设计师,团队的指挥者,技术团队的中流砥柱,企业战略和资本规划的实战专家。
- 🎉这个目标的实现需要不懈的努力和持续的成长,但我必须努力追求。因为我知道,只有成为这样的人才,我才能在职业生涯中不断前进并为企业的发展带来真正的价值。在这个不断变化的时代,我必须随时准备好迎接挑战,不断学习和探索新的领域,才能不断地向前推进。我坚信,只要我不断努力,我一定会达到自己的目标。
📙经过多年在CSDN创作上千篇文章的经验积累,我已经拥有了不错的写作技巧。同时,我还与清华大学出版社签下了四本书籍的合约,并将陆续在明年出版。这些书籍包括了基础篇、进阶篇、架构篇的📌《Java项目实战—深入理解大型互联网企业通用技术》📌,以及📚《解密程序员的思维密码–沟通、演讲、思考的实践》📚。具体出版计划会根据实际情况进行调整,希望各位读者朋友能够多多支持!
🌾阅读前,快速浏览目录和章节概览可帮助了解文章结构、内容和作者的重点。了解自己希望从中获得什么样的知识或经验是非常重要的。建议在阅读时做笔记、思考问题、自我提问,以加深理解和吸收知识。阅读结束后,反思和总结所学内容,并尝试应用到现实中,有助于深化理解和应用知识。与朋友或同事分享所读内容,讨论细节并获得反馈,也有助于加深对知识的理解和吸收。
🔔如果您需要转载或者搬运这篇文章的话,非常欢迎您私信我哦~
💡在这个美好的时刻,本人不再啰嗦废话,现在毫不拖延地进入文章所要讨论的主题。接下来,我将为大家呈现正文内容。
协同过滤是推荐系统领域最经典的模型之一,它基于用户之间或物品之间的相似性,将用户对物品的喜好转化为对其他物品的喜好,从而实现个性化推荐。我们应该掌握以下几点:
深度学习的出现为推荐系统带来了新的思路和方法。深度学习模型的主要优点是能够自动学习高阶特征和非线性关系,从而得到更准确的推荐结果。深度学习推荐模型的发展脉络主要包括以下几个阶段:
TensorFlow是目前流行的深度学习框架之一,它具有易用性、可扩展性和高性能等优点。在使用TensorFlow进行深度学习模型的实现和训练之前,需要进行环境配置和基本使用方法的掌握,包括以下几个方面:
特征工程是模型训练的重要组成部分,它的目的是从原始数据中提取有效的特征并转换为模型输入。在推荐系统中,特征工程需要处理用户、物品和上下文等多维度的信息,包括以下几个方面:
Embedding+MLP模型是深度学习推荐模型中最经典和基础的一种,它将用户和物品的离散特征通过Embedding方式转换为低维稠密向量,然后通过多层感知机(MLP)进行特征组合和映射,最终得到用户对物品的预测评分。在使用TensorFlow实现Embedding+MLP模型时,需要掌握以下几个方面:
Wide&Deep模型是一种将线性模型和深度模型结合的推荐模型,它既可以捕捉用户和物品之间的线性关系,又能够学习到隐含的高阶特征和非线性关系,同时也兼顾了模型的记忆能力和泛化能力。要掌握Wide&Deep模型,需要了解以下几个方面: