• 【safetensor】介绍和基础代码


    Hugging Face, EleutherAI, StabilityAI 用的多

    介绍

    文件形式

    • header,体现其特性。如果强行将pickle或者空软连接 打开,会出现报错。解决详见:debug 连接到其他教程
    • 结构和参数
      数据结构

    安装

    with pip:
    
    Copied
    pip install safetensors
    with conda:
    
    Copied
    conda install -c huggingface safetensors
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    Usage

    文档: https://huggingface.co/docs/safetensors/index
    github: https://github.com/huggingface/safetensors

    测试安装

    import torch
    from safetensors import safe_open
    from safetensors.torch import save_file
    
    tensors = {
       "weight1": torch.zeros((1024, 1024)),
       "weight2": torch.zeros((1024, 1024))
    }
    save_file(tensors, "model.safetensors")
    
    tensors = {}
    with safe_open("model.safetensors", framework="pt", device="cpu") as f:
       for key in f.keys():
           tensors[key] = f.get_tensor(key)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    加载

    文档 https://huggingface.co/docs/diffusers/using-diffusers/using_safetensors

    from diffusers import StableDiffusionPipeline
    
    pipeline = StableDiffusionPipeline.from_single_file(
        "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
    )
    
    • 1
    • 2
    • 3
    • 4
    • 5

    Load tensors

    
    from safetensors import safe_open
    
    tensors = {}
    with safe_open("model.safetensors", framework="pt", device=0) as f:
        for k in f.keys():
            tensors[k] = f.get_tensor(k)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    # Loading only part of the tensors (interesting when running on multiple GPU)
    
    from safetensors import safe_open
    
    tensors = {}
    with safe_open("model.safetensors", framework="pt", device=0) as f:
        tensor_slice = f.get_slice("embedding")
        vocab_size, hidden_dim = tensor_slice.get_shape()
        tensor = tensor_slice[:, :hidden_dim]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    保存

    
    import torch
    from safetensors.torch import save_file
    
    tensors = {
        "embedding": torch.zeros((2, 2)),
        "attention": torch.zeros((2, 3))
    }
    save_file(tensors, "model.safetensors")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    转换到safetensor

    • 在线,利用hugging face

    The easiest way to convert your model weights is to use the Convert Space, given your model weights are already stored on the Hub. The Convert Space downloads the pickled weights, converts them, and opens a Pull Request to upload the newly converted .safetensors file to your repository.

    # 主函数
    def convert_file(
        pt_filename: str,
        sf_filename: str,
    ):
        loaded = torch.load(pt_filename, map_location="cpu")
        if "state_dict" in loaded:
            loaded = loaded["state_dict"]
        shared = shared_pointers(loaded)
        for shared_weights in shared:
            for name in shared_weights[1:]:
                loaded.pop(name)
    
        # For tensors to be contiguous
        loaded = {k: v.contiguous() for k, v in loaded.items()}
    
        dirname = os.path.dirname(sf_filename)
        os.makedirs(dirname, exist_ok=True)
        save_file(loaded, sf_filename, metadata={"format": "pt"})
        check_file_size(sf_filename, pt_filename)
        reloaded = load_file(sf_filename)
        for k in loaded:
            pt_tensor = loaded[k]
            sf_tensor = reloaded[k]
            if not torch.equal(pt_tensor, sf_tensor):
                raise RuntimeError(f"The output tensors do not match for key {k}")
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27

    例子

    解析

    import requests # pip install requests
    import struct
    
    def parse_single_file(url):
        # Fetch the first 8 bytes of the file
        headers = {'Range': 'bytes=0-7'}
        response = requests.get(url, headers=headers)
        # Interpret the bytes as a little-endian unsigned 64-bit integer
        length_of_header = struct.unpack(', response.content)[0]
        # Fetch length_of_header bytes starting from the 9th byte
        headers = {'Range': f'bytes=8-{7 + length_of_header}'}
        response = requests.get(url, headers=headers)
        # Interpret the response as a JSON object
        header = response.json()
        return header
    
    url = "https://huggingface.co/gpt2/resolve/main/model.safetensors"
    header = parse_single_file(url)
    
    print(header)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  • 相关阅读:
    RxJava(三)-合并操作符
    C语言 ini 文件读写【Iniparser库】
    C# 反射机制
    4WRKE16W6-200L-3X/6EG24EK31/A1D3M(R900977311)比例方向阀
    windows虚拟机中docker运行springboot容器报错:Unable to access jarfile /app.jar
    PHP:枚举和对象的差异
    探索 Chrome 插件开发之旅
    对于女生来说,软件测试和前端,学哪一个更好啊
    Vue-插槽
    【附源码】计算机毕业设计JAVA超市货品进销存系统前台
  • 原文地址:https://blog.csdn.net/prinTao/article/details/133972928