前景提示#
- 最近小伙伴问了一个题目,就是用Java开发线性代数,本身Java的能力并不是很擅长做这样的工作,需要计算的话还是用python开发更好,方便快捷,简单方便,但是,既然有这样的需求还是需要进行开发的,毕竟没有客户会管你多么费劲,只会说你开发不了水平不够,这边进行了九个小时的开发,开发了Java和python两个版本,本文的优势就在于系统全面,并且拿来可用,对于那些急于解决问题,完成作业的小伙伴,非常友好,因此,这篇文章对你帮助极大,希望你喜欢。
需求#
- 题目如下如这样。
分析#
1、初始化不需要指定矩阵的尺寸,并且可以直接传入数据。#
- 题目一的要求翻译一下,就是要(1)写一个子类继承父类,(2)子类要有一个构造方法可以传入double[]类型的数据,(3)打印的结果要像图例那样,所以要重写showInfo方法(这是没重写实际运行发现的,初期没觉得要重写)
2、可以计算2x2矩阵的逆#
- 题目翻译:(1) 要开发一个get_inverse()在子类中(2)要增加一个判断判断在矩阵中全是0的时候要有判断输出。
3、可以做2x2的矩阵乘法#
- 题目翻译:(1) 要开发一个方法mul(m3),可以做矩阵的乘法 (2)方法之间可以互相调用mul().showInfo().
Java版本开发#
一、 开发详情#
1、开发一个子类,如图所示。
父类
package com.grandfather.www.marixs;
/**
* @projectName: marixs
* @package: com.grandfathers.www.marixs
* @className: BaseMatrix
* @author: your-father
* @description: TODO
* @date: 2023-09-30 20:58
* @version: 1.0
*/
public class BaseMatrix {
// 矩阵的行列数
int m = 0, n = 0;
// 矩阵的数据
float data[];
public BaseMatrix() {
}
// 构造函数
public BaseMatrix(int m, int n) {
this.m = m;
this.n = n;
this.data = new float[m * n];
}
// 设置矩阵
public void setData(float[] data) {
this.data = data;
}
public float[] getData() {
return data;
}
// 显示矩阵的信息
void showInfo() {
System.out.println("-----------");
System.out.println("矩阵尺寸为: " + m + "x" + n);
System.out.println("矩阵的数据为 : ");
for (int i = 0; i < this.data.length; i++) {
System.out.println(this.data[i] + ",");
if ((i + 1) % n == 0) {
System.out.println("\n");
}
}
System.out.println("------------");
}
// 矩阵加法
BaseMatrix add(BaseMatrix m2) {
if ((this.m == m2.m) && (this.n == m2.n)) {
float[] d = new float[m * n];
for (int i = 0; i < m * n; i++) {
d[i] = this.data[i] + m2.data[i];
}
BaseMatrix baseMatrix = new BaseMatrix(m, n);
// 结果放到新的矩阵中
baseMatrix.setData(d);
return baseMatrix;
} else {
System.out.println("两个矩阵尺寸不一致,无法做加法");
return null;
}
}
}
子类
public class Marix_2X2 extends BaseMatrix {
public static void main(String[] args) {
// 查看矩阵
Marix_2X2 marix2X2 = new Marix_2X2();
marix2X2.setData(new float[]{1, 2, 2, 5});
marix2X2.n=2;
marix2X2.showInfo();
}
}
- 建个基础的版本,可以做个继承BaseMatrix,查看其父类的方法,什么也不改就只能像上面这样使用,可以看到,跟测试完全不一样,打印的结果中间有个大空格,这样不符合题目的要求,因此,需要改造。
2、根据问题修改子类,父类,以便真实可用
解决1、初始化不需要指定矩阵的尺寸,并且可以直接传入数据。
- 首先要在子类里添加构造方法
public class Marix_2X2 extends BaseMatrix {
public Marix_2X2() {
}
public Marix_2X2(float[] data) {
super();
this.data = data;
createBase(data);
}
BaseMatrix createBase(float[] data) {
int m = 0, n = 0;
for (int i = 0; i < data.length; i++) {
if (i % 2 == 0) {
n = i;
} else {
m = i;
}
}
this.m = m;
this.n = n;
BaseMatrix baseMatrix = new BaseMatrix(m, n);
// 结果放到新的矩阵中
baseMatrix.setData(data);
return baseMatrix;
}
}
-
其次要重写showInfo() 方法
// 显示矩阵的信息 @Override void showInfo() { System.out.println("-----------"); System.out.println("矩阵尺寸为: " + (m - 1) + "x" + n); System.out.println("矩阵的数据为 : "); for (int i = 0; i < this.data.length; i++) { System.out.print(this.data[i] + ","); if ((i + 1) % n == 0) { System.out.println(); } } System.out.println("------------"); System.out.println(); }
-
最终第一个版本结果。(题目一的要求就满足了)
package com.grandfather.www.marixs; /** * @projectName: marixs * @package: com.grandfathers.www.marixs * @className: Marix_2X2 * @author: your-father * @description: TODO * @date: 2023-09-30 21:14 * @version: 1.0 */ public class Marix_2X2 extends BaseMatrix { public Marix_2X2() { } public Marix_2X2(float[] data) { super(); this.data = data; createBase(data); } BaseMatrix createBase(float[] data) { int m = 0, n = 0; for (int i = 0; i < data.length; i++) { if (i % 2 == 0) { n = i; } else { m = i; } } this.m = m; this.n = n; BaseMatrix baseMatrix = new BaseMatrix(m, n); // 结果放到新的矩阵中 baseMatrix.setData(data); return baseMatrix; } // 显示矩阵的信息 @Override void showInfo() { System.out.println("-----------"); System.out.println("矩阵尺寸为: " + (m - 1) + "x" + n); System.out.println("矩阵的数据为 : "); for (int i = 0; i < this.data.length; i++) { System.out.print(this.data[i] + ","); if ((i + 1) % n == 0) { System.out.println(); } } System.out.println("------------"); System.out.println(); } public static void main(String[] args) { // 查看矩阵 Marix_2X2 marix2X2 = new Marix_2X2(new float[]{1, 2, 2, 5}); marix2X2.showInfo(); } }
解决 2、可以计算2x2矩阵的逆
- 这里就写的比较复杂了,主要是一般都是按照二维数组的处理方式处理的,而题目给的书传入一个一维数组,所以这里总是要处理,一维数组变二维,二维数组变一维这样的问题。
样例一
// 判断数组的元素是否全为0
boolean flag = true;
private Marix_2X2 get_inverse() {
Marix_2X2 m1 = new Marix_2X2(this.data);
if (null != this.data) {
float[] newdata = this.data;
int temp = 0;
for (int i = 0; i < newdata.length; i++) {
if (newdata[i] == 0) {
temp++;
}
}
if (temp == newdata.length) {
m1.flag = false;
} else {
float[][] newdata2 = new float[this.m - 1][this.n];
newdata2 = one2Two(newdata, newdata2);
float[][] floats = gaussianElimination(newdata2);
float[] result = two2One(floats, newdata);
m1.setData(result);
return m1;
}
return m1;
} else {
System.out.println("为传入合法的数据....");
return null;
}
}
float[][] gaussianElimination(float[][] arr) {
int i, j, k;
float tem_1, tem_2, tem_3;
int N = arr.length;
float[][] W = new float[N][2 * N];
float[][] result = new float[N][N];
// 对矩阵右半部分进行扩增
for (i = 0; i < arr.length; i++) {
for (j = 0; j < 2 * arr.length; j++) {
if (j < arr.length) {
W[i][j] = arr[i][j];
} else {
W[i][j] = (float) (j - N == i ? 1 : 0);
}
}
}
for (i = 0; i < N; i++) {
// 判断矩阵第一行第一列的元素是否为0,若为0,继续判断第二行第一列元素,直到不为0,将其加到第一行
if (((int) W[i][i]) == 0) {
for (j = i + 1; j < N; j++) {
if (((int) W[j][i]) != 0) {
break;
}
}
if (j == N) {
System.out.print("这个矩阵不能求逆");
break;
}
//将前面为0的行加上后面某一行
for (k = 0; k < 2 * N; k++) {
W[i][k] += W[j][k];
}
}
//将前面行首位元素置1
tem_1 = W[i][i];
for (j = 0; j < 2 * N; j++) {
W[i][j] = W[i][j] / tem_1;
}
//将后面所有行首位元素置为0
for (j = i + 1; j < N; j++) {
tem_2 = W[j][i];
for (k = i; k < 2 * N; k++) {
W[j][k] = W[j][k] - tem_2 * W[i][k];
}
}
}
// 将矩阵前半部分标准化
for (i = N - 1; i >= 0; i--) {
for (j = i - 1; j >= 0; j--) {
tem_3 = W[j][i];
for (k = i; k < 2 * N; k++) {
W[j][k] = W[j][k] - tem_3 * W[i][k];
}
}
}
//得出逆矩阵
for (i = 0; i < N; i++) {
for (j = N; j < 2 * N; j++) {
result[i][j - N] = W[i][j];
}
}
return result;
}
/*!!!注意:
* 1.传入的数组里两个数组的大小(一维数组length为10,则二维数组的行数乘列数也为10
* 2.数组类型必须一样
* */
public static float[][] one2Two(float[] data, float[][] da) {
int k = 0;
int hang = da.length;
int lie = 0;
if (!isAllZero(da)) {
lie = da[0].length;
} else {
lie = 1;
}
for (int i = 0; i < hang; i++) {
for (int j = 0; j < lie; j++) {
da[i][j] = data[k];
k++;
}
}
return da;
}
/*!!!注意:
* 1.传入的数组里两个数组的大小(一维数组length为10,则二维数组的行数乘列数也为10
* 2.数组类型必须一样
* */
public static float[] two2One(float[][] da, float[] data) {
int k = 0;
int hang = da.length;
int lie = 0;
if (!isAllZero(da)) {
lie = da[0].length;
} else {
lie = 1;
}
for (int i = 0; i < hang; i++) {
for (int j = 0; j < lie; j++) {
data[k] = da[i][j];
k++;
}
}
return data;
}
private static boolean isAllZero(float[][] onwResult) {
int temp = 0;
for (float[] floats : onwResult) {
for (float aFloat : floats) {
if (aFloat == 0) {
temp++;
}
}
}
if (temp == onwResult.length) {
return true;
} else {
return false;
}
}
// 添加了全为0 的判断
// 显示矩阵的信息
@Override
void showInfo() {
if (flag) {
System.out.println("-----------");
System.out.println("矩阵尺寸为: " + (m - 1) + "x" + n);
System.out.println("矩阵的数据为 : ");
for (int i = 0; i < this.data.length; i++) {
System.out.print(this.data[i] + ",");
if ((i + 1) % n == 0) {
System.out.println();
}
}
System.out.println("------------");
System.out.println();
} else {
System.out.println("行列式为0,不能求逆矩阵");
System.out.println();
}
}
测试
// 全为0的矩阵
Marix_2X2 m1 = new Marix_2X2(new float[]{0, 0, 0, 0});
Marix_2X2 tmp = m1.get_inverse();
assert tmp != null;
tmp.showInfo();
(1) 第二题第一问,全为零打印
(2)第二题第二问,逆矩阵输出
解决 3、可以做2x2的矩阵乘法
矩阵的乘法
private Marix_2X2 mul(Marix_2X2 m3) {
float[][] a = new float[this.m - 1][this.n];
one2Two(this.getData(), a);
float[][] b = new float[this.m - 1][this.n];
one2Two(m3.getData(), b);
float[][] c = new float[this.m - 1][this.n];
float[] newdata = this.data;
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a.length; j++) {
for (int k = 0; k < a.length; k++) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
float[] result = two2One(c, newdata);
m3.setData(result);
return m3;
}
替换逆矩阵算法
//求解逆矩阵
public Marix_2X2 get_inverse_2() {
Marix_2X2 m1 = new Marix_2X2(this.data);
if (null != this.data) {
int temp = 0;
float[] onwResult = this.data;
temp = isAllZero(temp, onwResult);
if (temp == onwResult.length) {
m1.flag = false;
} else {
float[][] floats = new float[this.m - 1][this.n];
float[][] floats2 = one2Two(m1.getData(), floats);
int row = floats2.length;
float[][] floats1 = CopyArry(floats2);
float[][] floats6 = new float[row][row];
float[][] floats7 = AdjointMatrix(floats1);
for (int i = 0; i < row; i++) {
for (int i1 = 0; i1 < row; i1++) {
floats6[i][i1] = floats7[i][i1] / ArrayCount(floats1, row);
}
}
float[] result = two2One(floats6, onwResult);
m1.setData(result);
}
return m1;
} else {
System.out.println("为传入合法的数据....");
return null;
}
}
//矩阵的复制
public static float[][] CopyArry(float[][] floats) {
int row = floats.length;
float[][] floats1 = new float[row][row];
for (int i = 0; i < row; i++) {
for (int i1 = 0; i1 < row; i1++) {
floats1[i][i1] = floats[i][i1];
}
}
return floats1;
}
//矩阵求伴随矩阵
public static float[][] AdjointMatrix(float[][] floats) {
int row = floats.length;
float[][] floats1 = CopyArry(floats);
float[][] floats4 = new float[row][row];
for (int i = 0; i < row; i++) {
for (int i1 = 0; i1 < row; i1++) {
floats4[i1][i] = (-1) * (((i + i1) % 2) == 1 ? 1 : -1) * ArrayCount(RemoveRC(floats1, row, i, i1), row - 1);
}
}
return floats4;
}
// 计算数组行列式方法
public static float ArrayCount(float a[][], int n) {
float p = 0;
for (int k = 0; k <= n - 2; k++) {
for (int r = k + 1; r <= n - 1; r++) {
if (a[k][k] == 0) {
try {
ArrayChange(a, k, n);
} catch (Exception e) {
System.out.println(e.getMessage());
return 0;
}
}
p = -(a[r][k] / a[k][k]);
for (int i = k; i <= n - 1; i++) {
a[r][i] = a[k][i] * p + a[r][i];
}
}
}
float result = 1;
for (int i = 0; i <= n - 1; i++) {
result *= a[i][i];
}
return result;
}
/**
* @param a 传入的数组
* @param k 出现问题的元素的行和列的坐标数值
* @param n 数组的长度 ,虽然是从0 标开始,但是这里仍然使用n来计数
*/
public static void ArrayChange(float a[][], int k, int n) {
float b[] = new float[n - k];
int c = k;
for (int i = k + 1; i <= n - 1; i++) {
if (a[i][k] != 0) {
c = i;
}
}
if (c == k) {
throw new RuntimeException("高斯求解失败");
}
int w = 0;
for (int i = k; i <= n - 1; i++) {
b[w] = a[k][i];
a[k][i] = a[c][i];
a[c][i] = b[w];
w++;
}
}
//去掉固定的行和列的行列式
public static float[][] RemoveRC(float[][] floats, int n, int p, int q) {
float[][] floats1 = new float[n][n];
float[][] floats2 = new float[n - 1][n - 1];
ArrayList arrayList = new ArrayList<>((n - 1) * (n - 1));
for (int i = 0; i <= n - 1; i++) {
for (int i1 = 0; i1 <= n - 1; i1++) {
floats1[i][i1] = floats[i][i1];
}
}
for (int i = 0; i <= n - 1; i++) {
for (int i1 = 0; i1 <= n - 1; i1++) {
if (i == p || i1 == q) {
} else {
arrayList.add(floats[i][i1]);
}
}
}
Object[] objects = arrayList.toArray();
int index = 0;
for (int i = 0; i < n - 1; i++) {
for (int i1 = 0; i1 < n - 1; i1++) {
floats2[i][i1] = (float) objects[index];
index++;
}
}
return floats2;
}
(1) 第三题第一问,逆矩阵乘法
-
测试代码
// 矩阵的乘法 Marix_2X2 m2 = new Marix_2X2(new float[]{2, 5, 1, 3}); Marix_2X2 m3 = new Marix_2X2(new float[]{4, -6, 2, 1}); m2.get_inverse_2().mul(m3).showInfo();
(2)第三题第二问,复合乘法
-
测试代码
// 矩阵的复合乘法 Marix_2X2 m4 = new Marix_2X2(new float[]{1, 4, -1, 2}); Marix_2X2 m5 = new Marix_2X2(new float[]{3, 1, 0, -1}); Marix_2X2 m6 = new Marix_2X2(new float[]{2, 0, -1, 1}); m4.get_inverse_2().mul(m5).mul(m6.get_inverse_2()).showInfo();
二、最终完整版#
- 父类
package com.grandfathers.www.exersice;/**
* @author: MrLiu
* @createTime: 2023/09/30 20:58
* @description: xxx
*/
/**
* @projectName: anlysistSentence
* @package: com.grandfathers.www.exersice
* @className: BaseMatrix
* @author: your-father
* @description: TODO
* @date: 2023-09-30 20:58
* @version: 1.0
*/
public class BaseMatrix {
// 矩阵的行列数
int m = 0, n = 0;
// 矩阵的数据
float data[];
public BaseMatrix() {
}
// 构造函数
public BaseMatrix(int m, int n) {
this.m = m;
this.n = n;
this.data = new float[m * n];
}
// public BaseMatrix(float[] data) {
// this.data = data;
// createBase(data);
// }
// 设置矩阵睡觉
public void setData(float[] data) {
this.data = data;
}
public float[] getData() {
return data;
}
// 显示矩阵的信息
void showInfo() {
System.out.println("-----------");
System.out.println("矩阵尺寸为: " + m + "x" + n);
System.out.println("矩阵的数据为 : ");
for (int i = 0; i < this.data.length; i++) {
System.out.println(this.data[i] + ",");
if ((i + 1) % n == 0) {
System.out.println("\n");
}
}
System.out.println("------------");
}
// 矩阵加法
BaseMatrix add(BaseMatrix m2) {
if ((this.m == m2.m) && (this.n == m2.n)) {
float[] d = new float[m * n];
for (int i = 0; i < m * n; i++) {
d[i] = this.data[i] + m2.data[i];
}
BaseMatrix baseMatrix = new BaseMatrix(m, n);
// 结果放到新的矩阵中
baseMatrix.setData(d);
return baseMatrix;
} else {
System.out.println("两个矩阵尺寸不一致,无法做加法");
return null;
}
}
}
-
子类
package com.grandfathers.www.exersice;/** * @author: MrLiu * @createTime: 2023/09/30 21:14 * @description: xxx */ import java.util.ArrayList; import java.util.Objects; import static java.lang.Math.pow; /** * @projectName: anlysistSentence * @package: com.grandfathers.www.exersice * @className: Marix_2X2 * @author: your-father * @description: TODO * @date: 2023-09-30 21:14 * @version: 1.0 */ public class Marix_2X2 extends BaseMatrix { // 判断数组的元素是否全为0 boolean flag = true; public Marix_2X2(float[] data) { super(); this.data = data; createBase(data); } BaseMatrix createBase(float[] data) { int m = 0, n = 0; for (int i = 0; i < data.length; i++) { if (i % 2 == 0) { n = i; } else { m = i; } } this.m = m; this.n = n; BaseMatrix baseMatrix = new BaseMatrix(m, n); // 结果放到新的矩阵中 baseMatrix.setData(data); return baseMatrix; } // 显示矩阵的信息 @Override void showInfo() { if (flag) { System.out.println("-----------"); System.out.println("矩阵尺寸为: " + (m - 1) + "x" + n); System.out.println("矩阵的数据为 : "); for (int i = 0; i < this.data.length; i++) { System.out.print(this.data[i] + ","); if ((i + 1) % n == 0) { System.out.println(); } } System.out.println("------------"); System.out.println(); } else { System.out.println("行列式为0,不能求逆矩阵"); System.out.println(); } } /** *
使用高斯消元法对矩阵进行求逆
* * @param arr 二维矩阵 * @return 矩阵的逆 */ float[][] gaussianElimination(float[][] arr) { int i, j, k; float tem_1, tem_2, tem_3; int N = arr.length; float[][] W = new float[N][2 * N]; float[][] result = new float[N][N]; // 对矩阵右半部分进行扩增 for (i = 0; i < arr.length; i++) { for (j = 0; j < 2 * arr.length; j++) { if (j < arr.length) { W[i][j] = arr[i][j]; } else { W[i][j] = (float) (j - N == i ? 1 : 0); } } } for (i = 0; i < N; i++) { // 判断矩阵第一行第一列的元素是否为0,若为0,继续判断第二行第一列元素,直到不为0,将其加到第一行 if (((int) W[i][i]) == 0) { for (j = i + 1; j < N; j++) { if (((int) W[j][i]) != 0) break; } if (j == N) { System.out.print("这个矩阵不能求逆"); break; } //将前面为0的行加上后面某一行 for (k = 0; k < 2 * N; k++) { W[i][k] += W[j][k]; } } //将前面行首位元素置1 tem_1 = W[i][i]; for (j = 0; j < 2 * N; j++) { W[i][j] = W[i][j] / tem_1; } //将后面所有行首位元素置为0 for (j = i + 1; j < N; j++) { tem_2 = W[j][i]; for (k = i; k < 2 * N; k++) { W[j][k] = W[j][k] - tem_2 * W[i][k]; } } } // 将矩阵前半部分标准化 for (i = N - 1; i >= 0; i--) { for (j = i - 1; j >= 0; j--) { tem_3 = W[j][i]; for (k = i; k < 2 * N; k++) { W[j][k] = W[j][k] - tem_3 * W[i][k]; } } } //得出逆矩阵 for (i = 0; i < N; i++) { for (j = N; j < 2 * N; j++) { result[i][j - N] = W[i][j]; } } return result; } /*!!!注意: * 1.传入的数组里两个数组的大小(一维数组length为10,则二维数组的行数乘列数也为10 * 2.数组类型必须一样 * */ public static float[][] one2Two(float[] data, float[][] da) { int k = 0; int hang = da.length; int lie = 0; if (!isAllZero(da)) { lie = da[0].length; } else { lie = 1; } for (int i = 0; i < hang; i++) { for (int j = 0; j < lie; j++) { da[i][j] = data[k]; k++; } } return da; } /*!!!注意: * 1.传入的数组里两个数组的大小(一维数组length为10,则二维数组的行数乘列数也为10 * 2.数组类型必须一样 * */ public static float[] two2One(float[][] da, float[] data) { int k = 0; int hang = da.length; int lie = 0; if (!isAllZero(da)) { lie = da[0].length; } else { lie = 1; } for (int i = 0; i < hang; i++) { for (int j = 0; j < lie; j++) { data[k] = da[i][j]; k++; } } return data; } private Marix_2X2 mul(Marix_2X2 m3) { float[][] a = new float[this.m - 1][this.n]; one2Two(this.getData(), a); float[][] b = new float[this.m - 1][this.n]; one2Two(m3.getData(), b); float[][] c = new float[this.m - 1][this.n]; float[] newdata = this.data; for (int i = 0; i < a.length; i++) { for (int j = 0; j < a.length; j++) { for (int k = 0; k < a.length; k++) { c[i][j] += a[i][k] * b[k][j]; } } } float[] result = two2One(c, newdata); m3.setData(result); return m3; } //正交化 public static float[][] Orthogonalization(float[][] floats) { float[][] floats1 = CopyArry(floats); int row = floats1.length; ArrayList<float[]> arrayList = new ArrayList<>(); for (int i = 0; i < row; i++) { arrayList.add(i, new float[row]); for (int i1 = 0; i1 < row; i1++) { arrayList.get(i)[i1] = floats1[i1][i]; } } for (int i = 0; i < row; i++) { float[] floats2 = new float[row]; CopySingleArray(arrayList.get(i), floats2); floats2 = XiuGindexN(floats1, i); CopySingleArray(floats1[i], floats2); } float[][] result = new float[row][row]; for (int i = 0; i < row; i++) { for (int i1 = 0; i1 < row; i1++) { result[i1][i] = floats1[i][i1]; } } return result; } //定义单一数组的复制 /** * @param floats1 即将要被修改的数组 * @param floats2 参考数组 * 修改了floats 1 数组 */ public static void CopySingleArray(float[] floats1, float[] floats2) { for (int i = 0; i < floats2.length; i++) { floats1[i] = floats2[i]; } } //定义回溯积累的正交化中间方法 /** * @param floats 传入的数组 * @param index 数组的行数 * @return 结果数组 * 根据行数来求出第index个 正交化的行向量, */ public static float[] XiuGindexN(float[][] floats, int index) { int row = floats.length; float[] result = new float[row]; float[][] floats1 = CopyArry(floats); if (index == 0) { CopySingleArray(result, floats1[index]); } else { for (int i = index - 1; i >= 0; i--) { float p = DeterminantProduct(floats1[index], floats1[i]) / DeterminantProduct(floats1[i], floats1[i]); float[] floats2 = NumberTimesArray(-p, floats1[i]); result = DeterminAntddition(result, floats2); } result = DeterminAntddition(result, floats1[index]); } return result; } //定义一个数和数组的乘法 public static float[] NumberTimesArray(float f, float[] floats) { int row = floats.length; float[] floats1 = new float[row]; for (int i = 0; i < row; i++) { floats1[i] = floats[i] * f; } return floats1; } //定义一个求两个数组积的方法 /** * @param floats1 传入的第一个数组 * @param floats2 传入的第二个数组 * @return 返回一个结果,不对原有的参数地址内容进行修改,是一个可靠的方法 */ public static float DeterminantProduct(float[] floats1, float[] floats2) { float result = 0; int row = floats1.length; for (int i = 0; i < row; i++) { result += floats1[i] * floats2[i]; } return result; } //定义正交基本矩阵计算 public float[][] OrthogonalBasic(float[][] floats) { int row = floats.length; float[][] floats1 = getData(new Marix_2X2(this.getData()).Transpose()); return Orthogonalization(floats1); } //定义正交基本单位化计算 public static float[][] OrthogonalasicUnit(float[][] floats) { int row = floats.length; float[][] floats1 = CopyArry(floats); return Unitization(new Marix_2X2(two2One(floats1, new float[row])).OrthogonalBasic(floats1)); } //矩阵的单位化 //修改原矩阵 public static float[][] Unitization(float[][] floats) { float[][] floats1 = CopyArry(floats); int row = floats1.length; for (int i = 0; i < row; i++) { float abVe = IntermediateAbsoluteValue(floats1, i); for (int i1 = 0; i1 < row; i1++) { floats1[i1][i] = floats1[i1][i] / abVe; } } return floats1; } //定义单位化中间方法 /** * @param floats 需要传入的数组 * @param index 数组的列 * @return 返回该列的 单位化数值 * 不修改原矩阵 */ public static float IntermediateAbsoluteValue(float[][] floats, int index) { float[][] floats1 = CopyArry(floats); int row = floats1.length; int index1 = index; float abVe = 0; while (index == index1) { for (int i = 0; i < row; i++) { abVe += floats1[i][index] * floats1[i][index]; } index++; } return (float) Math.sqrt(abVe); } //定义数组的加法 /** * @param floats1 传入的第一个数组 * @param floats2 传入的第二个数组 * @return 返回一个新的数组,不对原有的参数地址内容进行修改,是一个可靠的方法 */ public static float[] DeterminAntddition(float[] floats1, float[] floats2) { int row = floats1.length; float[] floats = new float[row]; for (int i = 0; i < row; i++) { floats[i] = floats1[i] + floats2[i]; } return floats; } //求解逆矩阵 public Marix_2X2 get_inverse_2() { Marix_2X2 m1 = new Marix_2X2(this.data); if (null != this.data) { int temp = 0; float[] onwResult = this.data; temp = isAllZero(temp, onwResult); if (temp == onwResult.length) { m1.flag = false; } else { float[][] floats = new float[this.m - 1][this.n]; float[][] floats2 = one2Two(m1.getData(), floats); int row = floats2.length; float[][] floats1 = CopyArry(floats2); float[][] floats6 = new float[row][row]; float[][] floats7 = AdjointMatrix(floats1); for (int i = 0; i < row; i++) { for (int i1 = 0; i1 < row; i1++) { floats6[i][i1] = floats7[i][i1] / ArrayCount(floats1, row); } } float[] result = two2One(floats6, onwResult); m1.setData(result); } return m1; } else { System.out.println("为传入合法的数据...."); return null; } } private static int isAllZero(int temp, float[] onwResult) { for (int i = 0; i < onwResult.length; i++) { if (onwResult[i] == 0) { temp++; } } return temp; } private static boolean isAllZero(float[][] onwResult) { int temp = 0; for (float[] floats : onwResult) { for (float aFloat : floats) { if (aFloat == 0) { temp++; } } } if (temp == onwResult.length) { return true; } else { return false; } } //矩阵的复制 public static float[][] CopyArry(float[][] floats) { int row = floats.length; float[][] floats1 = new float[row][row]; for (int i = 0; i < row; i++) { for (int i1 = 0; i1 < row; i1++) { floats1[i][i1] = floats[i][i1]; } } return floats1; } //矩阵求伴随矩阵 public static float[][] AdjointMatrix(float[][] floats) { int row = floats.length; float[][] floats1 = CopyArry(floats); float[][] floats4 = new float[row][row]; for (int i = 0; i < row; i++) { for (int i1 = 0; i1 < row; i1++) { floats4[i1][i] = (-1) * (((i + i1) % 2) == 1 ? 1 : -1) * ArrayCount(RemoveRC(floats1, row, i, i1), row - 1); } } return floats4; } //去掉固定的行和列的行列式 public static float[][] RemoveRC(float[][] floats, int n, int p, int q) { float[][] floats1 = new float[n][n]; float[][] floats2 = new float[n - 1][n - 1]; ArrayListarrayList = new ArrayList<>((n - 1) * (n - 1)); for (int i = 0; i <= n - 1; i++) { for (int i1 = 0; i1 <= n - 1; i1++) { floats1[i][i1] = floats[i][i1]; } } for (int i = 0; i <= n - 1; i++) { for (int i1 = 0; i1 <= n - 1; i1++) { if (i == p || i1 == q) { } else { arrayList.add(floats[i][i1]); } } } Object[] objects = arrayList.toArray(); int index = 0; for (int i = 0; i < n - 1; i++) { for (int i1 = 0; i1 < n - 1; i1++) { floats2[i][i1] = (float) objects[index]; index++; } } return floats2; } // 计算数组行列式方法 public static float ArrayCount(float a[][], int n) { float p = 0; for (int k = 0; k <= n - 2; k++) { for (int r = k + 1; r <= n - 1; r++) { if (a[k][k] == 0) { try { ArrayChange(a, k, n); } catch (Exception e) { System.out.println(e.getMessage()); return 0; } } p = -(a[r][k] / a[k][k]); for (int i = k; i <= n - 1; i++) { a[r][i] = a[k][i] * p + a[r][i]; } } } float result = 1; for (int i = 0; i <= n - 1; i++) { result *= a[i][i]; } return result; } //行列式行互换方法 /** * @param a 传入的数组 * @param k 出现问题的元素的行和列的坐标数值 * @param n 数组的长度 ,虽然是从0 标开始,但是这里仍然使用n来计数 */ public static void ArrayChange(float a[][], int k, int n) { float b[] = new float[n - k]; int c = k; for (int i = k + 1; i <= n - 1; i++) { if (a[i][k] != 0) { c = i; } } if (c == k) { throw new RuntimeException("高斯求解失败"); } int w = 0; for (int i = k; i <= n - 1; i++) { b[w] = a[k][i]; a[k][i] = a[c][i]; a[c][i] = b[w]; w++; } } //矩阵转置的方法 public Marix_2X2 Transpose() { Marix_2X2 marix2X2 = new Marix_2X2(this.data); float[][] floats1 = new float[this.m - 1][this.n]; float[][] floats2 = one2Two(marix2X2.getData(), floats1); for (int i = 0; i < floats2.length - 1; i++) { for (int j = 0; j < floats2[i].length; j++) { float temp = floats2[i][j]; floats2[i][j] = floats2[j][i]; floats2[j][i] = temp; } } float[] floats3 = this.data; float[] floats = two2One(floats2, floats3); marix2X2.setData(floats); return marix2X2; } /** * 求(h,v)位置的余子式 * * @param matrix * @param h * @param v * @return */ public float[][] confactor(float[][] matrix, int h, int v) { float[][] result = new float[matrix.length - 1][matrix[0].length - 1]; for (int i = 0; i < result.length; i++) { if (i < h - 1) { for (int j = 0; j < result[i].length; j++) { if (j < v - 1) { result[i][j] = matrix[i][j]; } else { result[i][j] = matrix[i][j + 1]; } } } else { for (int j = 0; j < result[i].length; j++) { if (j < v - 1) { result[i][j] = matrix[i + 1][j]; } else { result[i][j] = matrix[i + 1][j + 1]; } } } } return result; } private static float[][] getData(Marix_2X2 m8) { float[][] floats1 = new float[m8.m - 1][m8.n]; float[][] floats2 = one2Two(m8.getData(), floats1); return floats2; } public static void main(String[] args) { // 查看矩阵 Marix_2X2 marix2X2 = new Marix_2X2(new float[]{1, 2, 2, 5}); marix2X2.showInfo(); // 全为0的矩阵 Marix_2X2 m1 = new Marix_2X2(new float[]{0, 0, 0, 0}); Marix_2X2 tmp = m1.get_inverse_2(); assert tmp != null; tmp.showInfo(); // 求矩阵的逆矩阵 Marix_2X2 m0 = new Marix_2X2(new float[]{1, 2, 2, 5}); Marix_2X2 tmp0 = m0.get_inverse_2(); assert tmp0 != null; tmp0.showInfo(); // 矩阵的乘法 Marix_2X2 m2 = new Marix_2X2(new float[]{2, 5, 1, 3}); Marix_2X2 m3 = new Marix_2X2(new float[]{4, -6, 2, 1}); m2.get_inverse_2().mul(m3).showInfo(); // 矩阵的复合乘法 Marix_2X2 m4 = new Marix_2X2(new float[]{1, 4, -1, 2}); Marix_2X2 m5 = new Marix_2X2(new float[]{3, 1, 0, -1}); Marix_2X2 m6 = new Marix_2X2(new float[]{2, 0, -1, 1}); m4.get_inverse_2().mul(m5).mul(m6.get_inverse_2()).showInfo(); } }
三、其他相关方法的测试#
// 转置
Marix_2X2 m7 = new Marix_2X2(new float[]{2, 5, -1, 1});
Marix_2X2 transpose = m7.Transpose();
transpose.showInfo();
// 伴随矩阵
Marix_2X2 m8 = new Marix_2X2(new float[]{2, 5, -1, 1});
float[][] floats = m8.AdjointMatrix(getData(m8));
m8.setData(two2One(floats, m8.getData()));
m8.showInfo();
// 余子式
m8.setData(two2One(m8.confactor(getData(m8), 2, 2), m8.getData()));
m8.Transpose();
m8.showInfo();
Python版本开发#
- 都是面向对象的语言,因此操作步骤也是大同小异。
一、python代码#
1、导入 包
# 这个一定要导入,不然的话,是用不了的
import numpy as np
2、创建数组
A = np.array([[1,2],[2,5]])
3、打印数组
# 矩阵信息打印
def showInfo(x):
print("------------")
print("矩阵的尺寸为:",np.shape(x)[0],"x",np.shape(x)[1])
print(x)
print("------------")
4、求矩阵的逆
# 求逆矩阵
def getInverse(x):
if(np.all(x==0)):
print("行列为0,不能求逆矩阵")
else:
B = np.linalg.inv(x)
print("逆矩阵")
return B
5、矩阵的乘法
# 矩阵乘法
def mul(x,y):
c = np.matmul(x,y)
return c
6、完整版
import numpy as np
from numpy import *
# 矩阵信息打印
def showInfo(x):
print("------------")
print("矩阵的尺寸为:",np.shape(x)[0],"x",np.shape(x)[1])
print(x)
print("------------")
# 求逆矩阵
def getInverse(x):
if(np.all(x==0)):
print("行列为0,不能求逆矩阵")
else:
B = np.linalg.inv(x)
print("逆矩阵")
return B
# 矩阵乘法
def mul(x,y):
c = np.matmul(x,y)
return c
def main():
pass
if __name__ == '__main__':
main()
A = np.array([[1,2],[2,5]])
showInfo(A)
B = np.array([[0,0],[0,0]])
getInverse(B)
H = getInverse(A)
showInfo(H)
print("-----矩阵乘法-------")
C = np.array([[2,5],[1,3]])
D = np.array([[4,-6],[2,1]])
m2 = getInverse(C)
result1 = mul(m2,D)
showInfo(result1)
print("-----混合乘法-------")
E = np.array([[1,4],[-1,2]])
F = np.array([[3,1],[0,-1]])
G = np.array([[2,0],[-1,1]])
m3 = getInverse(E)
result2 = mul(m3,F)
m4 = getInverse(G)
result3 = mul(result2,m4)
showInfo(result3)
7、测试结果
- 明显可以看到python的写法比Java的更加简洁,容易理解,因此,这种题目如果可以自己选择,最好使用python开发。
8、拓展其他功能
# 求单位矩阵
def singleArray(x):
F = np.eye(x)
return F
# 矩阵转置
def transArray(x):
H = x.T
return H
# 计算行列式的值
def getValue(x):
H = np.linalg.det(x)
return H
# A的伴随矩阵
def adjointMatrix(A):
n,_=A.shape #获取阶数n
Am=np.zeros((n,n)) #Am初始化为零阵
for i in range(n): #每一行
for j in range(n): #每一列
Am[i,j]=Aij(A,i,j) #伴随阵元素
return Am.T
#代数余子式
def Aij(A,i,j):
up=np.hstack((A[:i,:j],A[:i,j+1:])) #横向连接上方片段
lo=np.hstack((A[i+1:,:j],A[i+1:,j+1:])) #横向连接下方片段
M=np.vstack((up,lo)) #纵向连接
return ((-1)**(i+j))*np.linalg.det(M) #代数余子式
# 求代数余子式
def cofactor(matrix, i, j):
m = np.delete(matrix, i, axis=0)
m = np.delete(m, j, axis=1)
return np.linalg.det(m)
def cofactor_matrix(matrix):
n = matrix.shape[0]
cofactors = np.zeros((n, n))
for i in range(n):
for j in range(n):
cofactors[i, j] = (-1) ** (i + j) * cofactor(matrix, i, j)
return cofactors
-
测试代码
if __name__ == '__main__': print("-----单位矩阵-------") H =np.array([[1,2,3],[4,5,6],[6,1,3]]) lie = np.shape(H)[1] result4=singleArray(lie) showInfo(result4) print("-----转置-------") result5=transArray(H) showInfo(result5) print("-----计算行列式的值-------") I =np.array([[1,1,1],[1,1,0],[1,1,3]]) result6=getValue(H) print(result6) print("-----伴随矩阵-------") #设置矩阵A A1=np.array([[1,2,3],[2,2,1],[3,4,3]]) Am=adjointMatrix(A1) #A的伴随阵 print("A∗=",Am) print("AA∗=",np.matmul(A1,Am)) # 也是求伴随,结果跟上边不一样 B1=np.linalg.inv(A1) A_bs = B1*np.linalg.det(A) print(A_bs) print("-----求代数余子式-------") A3 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 求解余子式矩阵 C3 = cofactor_matrix(A3) print(C3)
-
测试结果
总结#
-
明显的可以看出Java开发线性代数的代码量多于python好多,同时,复杂度和便于理解方面也是相形见拙,因为Java是一门开发网站的编程语言,因此处理科学计算类问题功能弱于python,因此,如果没有特殊要求,建议使用python开发这类题目,或者用更加偏向数学的matlab开发,本文的很多代码也是引用了别人的代码,属于利用拼接的方式,最终完成了题目的所有要求。
-
因为开发这个人和借鉴资料实在混杂,最后找找测测,使用了大量的时间,希望大家多多点赞,关注,支持,特此感谢,你的支持就是每位用心写作的博主最大的动力,只有每位博主共同努力,你才能更好的完成作业,更便捷的找到答案,生态区才能活跃,技术才能发展,才有更璀璨的未来,因此不要林西你的支持点赞,关注。