本篇博文转载于https://www.cnblogs.com/1024incn/tag/CUDA/,仅用于学习。
线程的组织形式对程序的性能影响是至关重要的,本篇博文主要以下面一种情况来介绍线程组织形式:
矩阵在memory中是row-major线性存储的:

在kernel里,线程的唯一索引非常有用,为了确定一个线程的索引,我们以2D为例:
首先可以将thread和block索引映射到矩阵坐标:
ix = threadIdx.x + blockIdx.x * blockDim.x
iy = threadIdx.y + blockIdx.y * blockDim.y
之后可以利用上述变量计算线性地址:
idx = iy * nx + ix

上图展示了block和thread索引,矩阵坐标以及线性地址之间的关系,谨记,相邻的thread拥有连续的threadIdx.x,也就是索引为(0,0)(1,0)(2,0)(3,0)...的thread连续,而不是(0,0)(0,1)(0,2)(0,3)...连续,跟我们线代里玩矩阵的时候不一样。
现在可以验证出下面的关系:
thread_id(2,1)block_id(1,0) coordinate(6,1) global index 14 ival 14
下图显示了三者之间的关系:

- int main(int argc, char **argv) {
- printf("%s Starting...\n", argv[0]);
- // set up device
- int dev = 0;
- cudaDeviceProp deviceProp;
- CHECK(cudaGetDeviceProperties(&deviceProp, dev));
- printf("Using Device %d: %s\n", dev, deviceProp.name);
- CHECK(cudaSetDevice(dev)); // set up date size of matrix
- int nx = 1<<14;
- int ny = 1<<14;
- int nxy = nx*ny;
- int nBytes = nxy * sizeof(float);
- printf("Matrix size: nx %d ny %d\n",nx, ny);
- // malloc host memory
- float *h_A, *h_B, *hostRef, *gpuRef;
- h_A = (float *)malloc(nBytes);
- h_B = (float *)malloc(nBytes);
- hostRef = (float *)malloc(nBytes);
- gpuRef = (float *)malloc(nBytes);
- // initialize data at host side
- double iStart = cpuSecond();
- initialData (h_A, nxy);
- initialData (h_B, nxy);
- double iElaps = cpuSecond() - iStart;
- memset(hostRef, 0, nBytes);
- memset(gpuRef, 0, nBytes);
- // add matrix at host side for result checks
- iStart = cpuSecond();
- sumMatrixOnHost (h_A, h_B, hostRef, nx,ny);
- iElaps = cpuSecond() - iStart;
- // malloc device global memory
- float *d_MatA, *d_MatB, *d_MatC;
- cudaMalloc((void **)&d_MatA, nBytes);
- cudaMalloc((void **)&d_MatB, nBytes);
- cudaMalloc((void **)&d_MatC, nBytes);
- // transfer data from host to device
- cudaMemcpy(d_MatA, h_A, nBytes, cudaMemcpyHostToDevice);
- cudaMemcpy(d_MatB, h_B, nBytes, cudaMemcpyHostToDevice);
- // invoke kernel at host side
- int dimx = 32;
- int dimy = 32;
- dim3 block(dimx, dimy);
- dim3 grid((nx+block.x-1)/block.x, (ny+block.y-1)/block.y);
- iStart = cpuSecond();
- sumMatrixOnGPU2D <<< grid, block >>>(d_MatA, d_MatB, d_MatC, nx, ny);
- cudaDeviceSynchronize();
- iElaps = cpuSecond() - iStart;
- printf("sumMatrixOnGPU2D <<<(%d,%d), (%d,%d)>>> elapsed %f sec\n", grid.x,
- grid.y, block.x, block.y, iElaps);
- // copy kernel result back to host side
- cudaMemcpy(gpuRef, d_MatC, nBytes, cudaMemcpyDeviceToHost);
- // check device results
- checkResult(hostRef, gpuRef, nxy);
- // free device global memory
- cudaFree(d_MatA);
- cudaFree(d_MatB);
- cudaFree(d_MatC);
- // free host memory
- free(h_A);
- free(h_B);
- free(hostRef);
- free(gpuRef);
- // reset device
- cudaDeviceReset();
- return (0);
- }
编译运行:
$ nvcc -arch=sm_20 sumMatrixOnGPU-2D-grid-2D-block.cu -o matrix2D $ ./matrix2D
输出:
./a.out Starting... Using Device 0: Tesla M2070 Matrix size: nx 16384 ny 16384 sumMatrixOnGPU2D <<<(512,512), (32,32)>>> elapsed 0.060323 sec Arrays match.
接下来,我们更改block配置为32x16,重新编译,输出为:
sumMatrixOnGPU2D <<<(512,1024), (32,16)>>> elapsed 0.038041 sec
可以看到,性能提升了一倍,直观的来看,我们会认为第二个配置比第一个多了一倍的block所以性能提升一倍,实际上也确实是因为block增加了。但是,如果你继续增加block的数量,则性能又会降低:
sumMatrixOnGPU2D <<< (1024,1024), (16,16) >>> elapsed 0.045535 sec
下图展示了不同配置的性能;

关于性能的分析将在之后的博文中总结,现在只是了解下,本文在于掌握线程组织的方法。