摘要:通过模拟图片数据,送入模型,来检验模型是否能够跑通,该方法执行代码调试尤其方便。一个非常好的优点:无需设置数据集,也无需繁琐的参数设置,只需要模拟一个batch的数据,直接送入模型进行测试,简单快捷,能节省大量的时间。
①假设我编写的模型名称叫做:ESA_blcok
import torch.nn as nn
import torch
class ESA_blcok(nn.Module): # 这段代码只是模版,具体内容根据自己的模型来编程
def __init__(self, dim, heads=8, dim_head=64, mlp_dim=512, dropout=0.):
super().__init__()
self.ESAlayer = ...
self.ff = ...
def forward(self, x):
...
...
...
return out+x # 编写完自己模型了
②想要验证自己写的代码是否可以跑通,可以先设置一个张量,比如我设置送入模型的图片shape:(2,3,512,512),即batchsize=2,通道数为3,图片尺寸为512×512,可以用一行代码来生成:
input = torch.rand((4, 3, 320, 320)) # (B,C,H,W)
③声明模型:
esa = ESA_blcok(dim=3) # ESA_blcok就是你自己编写的模型
④将图片送入模型:
output = esa(x)
⑤最后打印输出,检查是否有模型输出结果:
print(output.shape)
完整流程如下:
import torch.nn as nn
import torch
class ESA_blcok(nn.Module): # 这段代码只是模版,具体内容根据自己的模型来编程
def __init__(self, dim, heads=8, dim_head=64, mlp_dim=512, dropout=0.):
super().__init__()
self.ESAlayer = ...
self.ff = ...
def forward(self, x):
...
...
...
return out+x # 编写完自己模型了
# 开始验证模型是否能跑通
# if __name__ == '__main__':程序从改行代码开始运行
if __name__ == '__main__':
input = torch.rand((4, 3, 320, 320))
esa = ESA_blcok(dim=3)
output = esa(x)
print(output.shape) # 如果有输出,说明模型跑通了
如果想体验完整的过程,下面是一个完整的示例,能够直接运行:
# 这里测试了两个模型,大家不必关心模型的具体实现,只要掌握方法即可
import torch.nn as nn
import torch
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import torch.nn.functional as F
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class PPM(nn.Module):
def __init__(self, pooling_sizes=(1, 3, 5)):
super().__init__()
self.layer = nn.ModuleList([nn.AdaptiveAvgPool2d(output_size=(size, size)) for size in pooling_sizes])
def forward(self, feat):
b, c, h, w = feat.shape
output = [layer(feat).view(b, c, -1) for layer in self.layer]
output = torch.cat(output, dim=-1)
return output
# Efficient self attention
class ESA_layer(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim=-1)
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, kernel_size=1, stride=1, padding=0, bias=False)
self.ppm = PPM(pooling_sizes=(1, 3, 5))
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
# input x (b, c, h, w)
b, c, h, w = x.shape
q, k, v = self.to_qkv(x).chunk(3, dim=1) # q/k/v shape: (b, inner_dim, h, w)
q = rearrange(q, 'b (head d) h w -> b head (h w) d', head=self.heads) # q shape: (b, head, n_q, d)
k, v = self.ppm(k), self.ppm(v) # k/v shape: (b, inner_dim, n_kv)
k = rearrange(k, 'b (head d) n -> b head n d', head=self.heads) # k shape: (b, head, n_kv, d)
v = rearrange(v, 'b (head d) n -> b head n d', head=self.heads) # v shape: (b, head, n_kv, d)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale # shape: (b, head, n_q, n_kv)
attn = self.attend(dots)
out = torch.matmul(attn, v) # shape: (b, head, n_q, d)
out = rearrange(out, 'b head n d -> b n (head d)')
return self.to_out(out)
class ESA_blcok(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, mlp_dim=512, dropout=0.):
super().__init__()
self.ESAlayer = ESA_layer(dim, heads=heads, dim_head=dim_head, dropout=dropout)
self.ff = PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))
def forward(self, x):
b, c, h, w = x.shape
out = rearrange(x, 'b c h w -> b (h w) c')
out = self.ESAlayer(x) + out
out = self.ff(out) + out
out = rearrange(out, 'b (h w) c -> b c h w', h=h)
return out+x
# return out
def MaskAveragePooling(x, mask):
mask = torch.sigmoid(mask)
b, c, h, w = x.shape
eps = 0.0005
x_mask = x * mask
h, w = x.shape[2], x.shape[3]
area = F.avg_pool2d(mask, (h, w)) * h * w + eps
x_feat = F.avg_pool2d(x_mask, (h, w)) * h * w / area
x_feat = x_feat.view(b, c, -1)
return x_feat
# Lesion-aware Cross Attention
class LCA_layer(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim=-1)
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, kernel_size=1, stride=1, padding=0, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x, mask):
# input x (b, c, h, w)
b, c, h, w = x.shape
q, k, v = self.to_qkv(x).chunk(3, dim=1) # q/k/v shape: (b, inner_dim, h, w)
q = rearrange(q, 'b (head d) h w -> b head (h w) d', head=self.heads) # q shape: (b, head, n_q, d)
k, v = MaskAveragePooling(k, mask), MaskAveragePooling(v, mask) # k/v shape: (b, inner_dim, 1)
k = rearrange(k, 'b (head d) n -> b head n d', head=self.heads) # k shape: (b, head, 1, d)
v = rearrange(v, 'b (head d) n -> b head n d', head=self.heads) # v shape: (b, head, 1, d)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale # shape: (b, head, n_q, n_kv)
attn = self.attend(dots)
out = torch.matmul(attn, v) # shape: (b, head, n_q, d)
out = rearrange(out, 'b head n d -> b n (head d)')
return self.to_out(out)
class LCA_blcok(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, mlp_dim=512, dropout=0.):
super().__init__()
self.LCAlayer = LCA_layer(dim, heads=heads, dim_head=dim_head, dropout=dropout)
self.ff = PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))
def forward(self, x, mask):
b, c, h, w = x.shape
out = rearrange(x, 'b c h w -> b (h w) c')
out = self.LCAlayer(x, mask) + out
out = self.ff(out) + out
out = rearrange(out, 'b (h w) c -> b c h w', h=h)
return out
# test
if __name__ == '__main__':
x = torch.rand((4, 3, 320, 320))
mask = torch.rand(4, 1, 320, 320)
lca = LCA_blcok(dim=3)
esa = ESA_blcok(dim=3)
print(lca(x, mask).shape)
print(esa(x).shape)