• 【SpringCloud微服务项目实战-mall4cloud项目(4)】——mall4cloud-rbac


    代码地址
    github地址
    fork自github原始项目
    gitee地址
    fork自gitee原始项目

    系统架构与模块介绍

    系统架构

    在这里插入图片描述
    从图中可以看到,微服务集群中,rbac模块是作为一个支持模块,与认证授权账户服务模块关联在一起的,但是代码中将其分离了出来作为单独的服务。中间的服务调用通过fegin来执行。对于权限管理系统来说,灵活而有组织的权限服务是必不可少的。

    rbac模型介绍

    RBAC(Role-Based Access Control)是一种访问控制模型,用于管理和控制系统或应用程序中的用户对资源的访问权限。RBAC基于角色的概念,将用户分配给不同的角色,而每个角色具有特定的权限,决定了用户可以执行的操作以及可以访问的资源。RBAC的主要组成部分包括:
    User(用户):每个用户都有唯一的UID识别,并被授予不同的角色
    Role(角色):不同角色具有不同的权限
    Permission(权限):访问权限
    用户-角色映射:用户和角色之间的映射关系
    角色-权限映射:角色和权限之间的映射
    可以通过以下关系反应

    1. 多用户对多角色关系: 多个用户可以被分配到一个或多个角色。这使得在一个组织中,不同用户可以担任不同的职务或角色,每个角色有不同的权限。
    2. 多角色对多权限关系: 多个角色可以包含一个或多个权限。这意味着不同的角色可以具有不同的权限,而同一权限可以分配给多个不同的角色。
      在这里插入图片描述
      上面的关系如果反应到数据库表设计中,至少需要五张表来设计:

    用户表(User Table):用于存储系统中的用户信息,每个用户有唯一的标识符(用户ID)。
    角色表(Role Table):用于存储不同角色的信息,每个角色也有唯一的标识符(角色ID)。
    权限表(Permission Table):用于存储系统中各种权限的信息,每个权限也有唯一的标识符(权限ID)。
    用户-角色关联表(User-Role Relationship Table):用于建立用户与角色之间的多对多关系,以确定哪些用户属于哪些角色。
    角色-权限关联表(Role-Permission Relationship Table):用于建立角色与权限之间的多对多关系,以确定哪些角色有权执行哪些操作。

    如果想在RBAC模型中增加一个菜单表,以管理系统菜单和其与角色的关联,可以将菜单表和角色-菜单关联表添加到数据库模型中
    在系统的数据表中,分别对应了user(用户表),role(角色表),menu(菜单表)、menu_permission(菜单权限表,这里将菜单和权限结合)、user_role(用户角色关联表)、role_menu(角色菜单表)
    在这里插入图片描述

    相关代码

    在模块中,主要是对于权限的校验是关联到了auth模块的过滤器中的代码,其他是提供到前端的接口代码

    权限校验

    auth模块下过滤器中代码如下:
    在这里插入图片描述
    在这里插入图片描述
    ①参数:传入了用户信息、uri、请求方式
    ②③:进行校验,主要是对普通用户端进行校验,其他没做校验,这里相当于只给了一个例子,有需要还是得自己补充。接下来就是调用rbac模块的远程接口。

    在这里插入图片描述
    ①:查询用户拥有的权限标识集合,这里是三张表的关联查询。
    在这里插入图片描述
    ②:根据用户类型获取权限对象
    ③④:判断逻辑为,如果请求的uri+method属于当前用户类型下的权限对象,判断这个用户下面的权限id集合是否包含该权限对象的id。包含则校验完成。

    这里会有一个疑问,对每次的请求都去与数据库交互,会对性能造成影响。如果为了避免这个影响,可以通过使用缓存来存储已验证的权限结果,可以减少频繁校验的性能开销

    代码中有这一步的处理:
    在这里插入图片描述
    在这里插入图片描述

    通过使用@Cacheable进行了方法级别的缓存,同时还有使用@CacheEvict清理缓存(在每次登录后)

    @Cacheable 是 Spring 框架提供的一个注解,用于启用方法级别的缓存。它可以用于将方法的计算结果缓存起来,以便在下一次调用相同方法时,可以直接返回缓存的结果,而不必重新计算
    在使用时,需要配置缓存管理器。Spring 支持多个缓存管理器,例如 EhCache、Caffeine、Redis 等

    缓存管理器的代码位置如下
    在这里插入图片描述
    具体代码如下:

    package com.mall4j.cloud.common.cache.config;
    
    import com.fasterxml.jackson.annotation.JsonTypeInfo;
    import com.fasterxml.jackson.databind.DeserializationFeature;
    import com.fasterxml.jackson.databind.ObjectMapper;
    import com.fasterxml.jackson.databind.SerializationFeature;
    import com.fasterxml.jackson.databind.jsontype.impl.LaissezFaireSubTypeValidator;
    import com.fasterxml.jackson.datatype.jsr310.JavaTimeModule;
    import com.mall4j.cloud.common.cache.adapter.CacheTtlAdapter;
    import com.mall4j.cloud.common.cache.bo.CacheNameWithTtlBO;
    import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
    import org.springframework.cache.CacheManager;
    import org.springframework.cache.annotation.EnableCaching;
    import org.springframework.context.annotation.Bean;
    import org.springframework.context.annotation.Configuration;
    import org.springframework.data.redis.cache.RedisCacheConfiguration;
    import org.springframework.data.redis.cache.RedisCacheManager;
    import org.springframework.data.redis.cache.RedisCacheWriter;
    import org.springframework.data.redis.connection.RedisConnectionFactory;
    import org.springframework.data.redis.core.RedisTemplate;
    import org.springframework.data.redis.core.StringRedisTemplate;
    import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
    import org.springframework.data.redis.serializer.RedisSerializationContext;
    import org.springframework.data.redis.serializer.RedisSerializer;
    import org.springframework.data.redis.serializer.StringRedisSerializer;
    
    import java.time.Duration;
    import java.util.Collections;
    import java.util.HashMap;
    import java.util.Map;
    
    /**
     * @author FrozenWatermelon
     * @date 2020/7/4
     */
    @EnableCaching
    @Configuration
    public class RedisCacheConfig {
    
    	@Bean
    	public CacheManager cacheManager(RedisConnectionFactory redisConnectionFactory, CacheTtlAdapter cacheTtlAdapter) {
    
    		// 创建 RedisCacheManager 实例
    		RedisCacheManager redisCacheManager = new RedisCacheManager(
    				RedisCacheWriter.nonLockingRedisCacheWriter(redisConnectionFactory),
    				// 默认策略,未配置的 key 会使用这个
    				this.getRedisCacheConfigurationWithTtl(3600),
    				// 指定 key 策略
    				this.getRedisCacheConfigurationMap(cacheTtlAdapter));
    
    		redisCacheManager.setTransactionAware(true);
    		return redisCacheManager;
    	}
    
    	// 获取缓存策略的映射
    	private Map<String, RedisCacheConfiguration> getRedisCacheConfigurationMap(CacheTtlAdapter cacheTtlAdapter) {
    		if (cacheTtlAdapter == null) {
    			return Collections.emptyMap();
    		}
    		Map<String, RedisCacheConfiguration> redisCacheConfigurationMap = new HashMap<>(16);
    		// 根据 CacheTtlAdapter 配置每个缓存的超时时间
    		for (CacheNameWithTtlBO cacheNameWithTtlBO : cacheTtlAdapter.listCacheNameWithTtl()) {
    			redisCacheConfigurationMap.put(cacheNameWithTtlBO.getCacheName(),
    					getRedisCacheConfigurationWithTtl(cacheNameWithTtlBO.getTtl()));
    		}
    		return redisCacheConfigurationMap;
    	}
    
    	// 获取 Redis 缓存策略(包括超时时间)
    	private RedisCacheConfiguration getRedisCacheConfigurationWithTtl(Integer seconds) {
    		RedisCacheConfiguration redisCacheConfiguration = RedisCacheConfiguration.defaultCacheConfig();
    		redisCacheConfiguration = redisCacheConfiguration
    				.serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(redisSerializer()))
    				.entryTtl(Duration.ofSeconds(seconds));
    
    		return redisCacheConfiguration;
    	}
    
    	/**
    	 * 自定义redis序列化的机制,重新定义一个ObjectMapper.防止和MVC的冲突
    	 * https://juejin.im/post/5e869d426fb9a03c6148c97e
    	 */
    	@Bean
    	public RedisSerializer<Object> redisSerializer() {
    		ObjectMapper objectMapper = new ObjectMapper();
    		// 反序列化时候遇到不匹配的属性并不抛出异常
    		objectMapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);
    		// 序列化时候遇到空对象不抛出异常
    		objectMapper.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false);
    		// 反序列化的时候如果是无效子类型,不抛出异常
    		objectMapper.configure(DeserializationFeature.FAIL_ON_INVALID_SUBTYPE, false);
    		// 不使用默认的dateTime进行序列化,
    		objectMapper.configure(SerializationFeature.WRITE_DATE_KEYS_AS_TIMESTAMPS, false);
    		// 使用JSR310提供的序列化类,里面包含了大量的JDK8时间序列化类
    		objectMapper.registerModule(new JavaTimeModule());
    		// 启用反序列化所需的类型信息,在属性中添加@class
    		objectMapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance, ObjectMapper.DefaultTyping.NON_FINAL,
    				JsonTypeInfo.As.PROPERTY);
    		// 配置null值的序列化器
    		GenericJackson2JsonRedisSerializer.registerNullValueSerializer(objectMapper, null);
    		return new GenericJackson2JsonRedisSerializer(objectMapper);
    	}
    
    	@Bean
    	public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory,
    			RedisSerializer<Object> redisSerializer) {
    		RedisTemplate<Object, Object> template = new RedisTemplate<>();
    		template.setConnectionFactory(redisConnectionFactory);
    		template.setDefaultSerializer(redisSerializer);
    		template.setValueSerializer(redisSerializer);
    		template.setHashValueSerializer(redisSerializer);
    		template.setKeySerializer(StringRedisSerializer.UTF_8);
    		template.setHashKeySerializer(StringRedisSerializer.UTF_8);
    		template.afterPropertiesSet();
    		return template;
    	}
    
    	@Bean
    	public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory redisConnectionFactory) {
    		return new StringRedisTemplate(redisConnectionFactory);
    	}
    
    	@Bean
    	@ConditionalOnMissingBean
    	public CacheTtlAdapter cacheTtl() {
    		return Collections::emptyList;
    	}
    
    }
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131

    创建一个配置类,用于配置 Redis 缓存管理器。可以使用 @Configuration 注解和 @EnableCaching 注解来启用缓存,并配置 RedisCacheManager。RedisCacheManager是自定义的缓存策略。

    this.getRedisCacheConfigurationMap(cacheTtlAdapter) 用于指定特定键的缓存策略。这是一种根据键的不同而使用不同策略的方式,可能根据不同的业务需求来自定义缓存超时时间等。cacheTtlAdapter 参数是一个用于生成特定键的策略的适配器。

    @Bean 方法 cacheManager 创建了一个 Redis 缓存管理器 RedisCacheManager 的实例。这个管理器用于管理缓存,配置缓存的策略,以及连接到 Redis 数据库。在这个方法中,使用了以下关键配置:

    RedisCacheWriter.nonLockingRedisCacheWriter(redisConnectionFactory):创建了一个用于与 Redis 交互的 RedisCacheWriter,这里使用了非阻塞方式的写入。这是默认的并且常用的写入方式

    getRedisCacheConfigurationWithTtl(3600):设置了默认的缓存策略,包括缓存超时时间为 3600 秒。

    getRedisCacheConfigurationMap(cacheTtlAdapter):指定了特定键的缓存策略,这些策略根据不同的键和超时时间动态配置,通过 cacheTtlAdapter 获取。

    setTransactionAware(true):设置缓存管理器为事务感知,以确保在事务中的缓存操作能够回滚。

    getRedisCacheConfigurationMap 方法根据 cacheTtlAdapter 动态生成缓存策略的映射。这个方法会检查 cacheTtlAdapter 是否为 null,如果不是,则获取一组特定缓存键和对应的超时时间,并创建相应的缓存策略。如果 cacheTtlAdapter 为 null,则返回一个空的映射。

    getRedisCacheConfigurationWithTtl 方法用于配置 Redis 缓存策略,包括序列化策略和缓存超时时间。

    redisSerializer 方法创建了一个自定义的 Redis 数据序列化器,其中包含了一些自定义的配置,如序列化器失败时不抛出异常、处理空对象等。

    redisTemplate 和 stringRedisTemplate 方法分别配置了 RedisTemplate 和 StringRedisTemplate,用于操作 Redis 数据库。它们使用了自定义的序列化器和连接工厂。

    最后的 cacheTtl 方法用于创建一个缓存超时时间适配器 CacheTtlAdapter,默认情况下返回一个空列表。

    接口代码

    接口代码主要从controller看即可,都是相关的一些数据表的业务需求,这里不再过多赘述
    在这里插入图片描述

    补充

    关于rbac的一些扩展

    RBAC1 模型
    在 RBAC的基础上引入了角色继承的概念。即:子角色可以继承父角色的所有权限。
    使用场景:如某个业务部门,有经理、主管、专员。主管的权限不能大于经理,专员的权限不能大于主管,如果采用 RBAC0 模型做权限系统,极可能出现分配权限失误,最终出现主管拥有经理都没有的权限的情况。
    而 RBAC1 模型就很好解决了这个问题,创建完经理角色并配置好权限后,主管角色的权限继承经理角色的权限,并且支持在经理权限上删减主管权限

    关于权限管理系统
    若依权限管理系统也是一个适合学习的项目,代码地址:https://gitee.com/y_project/RuoYi-Cloud
    RuoYi-Cloud

  • 相关阅读:
    CopyOnWriteArrayList源码分析
    【进击的JavaScript|高薪面试必看】JS基础-异步
    电商技术揭秘三十一:智能风控与反欺诈技术
    LVS负载均衡群集
    计算机视觉40例之案例03数字水印
    “攻城狮”如何写高逼格的代码
    什么是魔法函数?
    Java“牵手”lazada商品列表页数据采集+lazada商品价格数据排序,lazadaAPI接口申请指南
    8.CF446C DZY Loves Fibonacci Numbers 线段树Lazy标记
    C++ 学习之路(待更新)
  • 原文地址:https://blog.csdn.net/qq_40454136/article/details/133901050