引出:设计一个不能被继承的类。有如下方法:
class A
{
private:
A(int a=0)
:_a(a)
{}
public:
static A CreateOBj(int a=0)
{
return A(a);
}
protected:
int _a;
}
//简介限制,子类构成函数无法调用父类构造函数初始化
//子类的构造函数一定去调用父类的构造函数去初始化那一部分
//而父类的构造函数继承下来后为不可见
class B:public A
{}
int main()
{
A aa=;//构造函数被私有化,报错
//可以通过如下方法进行A类对象的创建
A aa=A::CreateOBj(10);
}
以上的方法虽然可以实现我们的需求,但是会对类进行强制性的封装,所有我们在C++11中还有更好的方法,通过final关键字来实现。
//修饰类
class A final
{
protected:
int _a;
};
//直接限制报错,A不可被继承
class B:public A
{};
//修饰函数
class C
{
public:
virtual void f() final
{
cout<<"C::f()"<<endl;
}
}
class D:public C
{
public:
//直接报错
virtual void f(){}
}
override: 检查派生类虚函数是否重写了基类某个虚函数,如果没有重写编译报错。
class Car{
public:
virtual void Drive(){}
};
class Benz :public Car {
public:
virtual void Drive() override {cout << "Benz-舒适" << endl;}
};
在虚函数的后面写上 =0 ,则这个函数为纯虚函数。
class Student
{
public:
virtual void show()=0;
};
包含纯虚函数的类叫做抽象类(也叫接口类),抽象类不能实例化出对象。派生类继承后也不能实例化出对象,只有重写纯虚函数,派生类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承:本质上强制子类去完成虚函数的重写。
class Car
{
public:
virtual void Drive() = 0;
};
class Benz :public Car
{
public:
virtual void Drive()
{
cout << "Benz-舒适" << endl;
}
};
class BMW :public Car
{
public:
virtual void Drive()
{
cout << "BMW-操控" << endl;
}
};
普通函数的继承是一种实现继承,派生类继承了基类函数,可以使用函数,继承的是函数的实现。虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数。
先来看一道经典的问题,sizeof(Base)是多少?
class Base
{
public:
virtual void Func1()
{
cout << "Func1()" << endl;
}
private:
int _b = 1;
};
很多一部分的答案是4Byte,但实际正确答案是8Byte,这是怎么一回事呢?看Visual Studion下的监视窗口。如下图。
结论:
1.除了_b成员,还多一个__vfptr放在对象的前面(注意有些平台可能会放到对象的最后面,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代表virtual,f代表function)。
2.一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数的地址要被放到虚函数表中,虚函数表也简称虚表。
继续深入:如果一个类的继承了该类,那么派生类中这个表放了些什么呢?
// 针对上面的代码我们做出以下改造
// 1.我们增加一个派生类Derive去继承Base
// 2.Derive中重写Func1
// 3.Base再增加一个虚函数Func2和一个普通函数Func3
class Base
{
public:
virtual void Func1()
{
cout << "Base::Func1()" << endl;
}
virtual void Func2()
{
cout << "Base::Func2()" << endl;
}
void Func3()
{
cout << "Base::Func3()" << endl;
}
private:
int _b = 1;
};
class Derive : public Base
{
public:
virtual void Func1()
{
cout << "Derive::Func1()" << endl;
}
private:
int _d = 2;
};
int main()
{
Base b;
Derive d;
return 0;
}
看Visual Studion下的监视窗口。如下图。
通过对监视窗口的分析可以得出如下结论:
typedef void(*VF_PTR)();
//void PrintVFTable(VF_PTR table[])
// 打印虚函数表中内容
void PrintVFTable(VF_PTR* table)
{
for (int i = 0; table[i] != nullptr; ++i)
{
printf("vft[%d]:%p->", i, table[i]);
VF_PTR f = table[i];
f();
}
cout << endl << endl;
}
int main()
{
Base b;
PrintVFTable((VF_PTR*)(*(void**)&b));
Derive d;
PrintVFTable((VF_PTR*)(*(void**)&d));
return 0;
}
7.在函数调用过程中,对象先找到虚函数表指针,通过该指针找到虚函数表,再在虚函数表中找到对应的函数指针,通过函数指针找到所需要的哪个函数。如下图所示。
class Person {
public:
virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person {
public:
virtual void BuyTicket() { cout << "买票-半价" << endl; }
};
void Func(Person& p)
{
p.BuyTicket();
}
int main()
{
Person Mike;
Func(&Mike);
Student Johnson;
Func(&Johnson);
return 0;
}
class Base1 {
public:
virtual void func1() {cout << "Base1::func1" << endl;}
virtual void func2() {cout << "Base1::func2" << endl;}
private:
int b1;
};
class Base2 {
public:
virtual void func1() {cout << "Base2::func1" << endl;}
virtual void func2() {cout << "Base2::func2" << endl;}
private:
int b2;
};
class Derive : public Base1, public Base2 {
public:
virtual void func1() {cout << "Derive::func1" << endl;}
virtual void func3() {cout << "Derive::func3" << endl;}
private:
int d1;
};
typedef void(*VFPTR) ();
void PrintVTable(VFPTR vTable[])
{
cout << " 虚表地址>" << vTable << endl;
for (int i = 0; vTable[i] != nullptr; ++i)
{
printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);
VFPTR f = vTable[i];
f();
}
cout << endl;
}
int main()
{
Derive d;
VFPTR* vTableb1 = (VFPTR*)(*(int*)&d);
PrintVTable(vTableb1);
VFPTR* vTableb2 = (VFPTR*)(*(int*)((char*)&d+sizeof(Base1)));
PrintVTable(vTableb2);
return 0;
}
分析上述图片可以得出如下结论:
1、多继承派生类的未重写的虚函数放在第一个继承基类部分的虚函数表中
2、多继承时,子类重写了Base1和Base2虚函数func1,但是虚函数表中重写的func1的地址却不一样,但是没关系,他们最终还是调到同一个函数。这是因为存在偏移量的问题。