这道题目初步看,和如下两题几乎是一样的,大家可以用回溯法,解决如下两题
这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。
本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。
如果对01背包不够了解,建议仔细看完如下两篇:
背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。
要注意题目描述中商品是不是可以重复放入。
即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。
要明确本题中我们要使用的是01背包,因为元素我们只能用一次。
回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。
那么来一一对应一下本题,看看背包问题如何来解决。
只有确定了如下四点,才能把01背包问题套到本题上来。
以上分析完,我们就可以套用01背包,来解决这个问题了。
确定dp数组含义:dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。
本题中每一个元素的数值既是重量,也是价值。
套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。
那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。
大家可能想,那还有装不满的时候?
拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。
而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。
我们只需要判断dp[j]的最大值是否等于j,就可以判断是否装满
确定递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
所以递推公式:dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);
dp数组初始化:dp[j] = 0
在01背包,一维dp如何初始化,已经讲过,
从dp[j]的定义来看,首先dp[0]一定是0。
如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。
这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。
本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。
遍历顺序:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
// 开始 01背包 for(int i = 0; i < nums.size(); i++) { for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历 dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); } }
- 1
- 2
- 3
- 4
- 5
- 6
debug:打印dp数组
class Solution {
public boolean canPartition(int[] nums) {
//题目写了数组非空
int len = nums.length;
int sum = 0;
for(int num : nums) sum += num;
//如果是奇数则没有意义,不能平分
if((sum % 2) != 0) return false;
int target = sum / 2;
int[] dp = new int[target + 1];
//初始化全是0:dp[0] = 0,其他的需要初始化非负最小整数,不能让初始化数字覆盖掉我们计算的值
for(int i = 0; i < len; i++) {
//物品 i 的重量是 nums[i],其价值也是 nums[i]
for(int j = target; j >= nums[i]; j--) {
dp[j] = Math.max(dp[j], (dp[j - nums[i]] + nums[i]));
}
//剪枝一下,每一次完成內層的for-loop,立即檢查是否dp[target] == target,優化時間複雜度(26ms -> 17ms)
if(dp[target] == target) return true;
}
return dp[target] == target;
}
}
这道题目就是一道01背包应用类的题目,需要我们拆解题目,然后套入01背包的场景。
01背包相对于本题,主要要理解,题目中物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2。
看代码的话,就可以发现,基本就是按照01背包的写法来的。