• 图像语义分割 pytorch复现U2Net图像分割网络详解


    在这里插入图片描述
    U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

    1、U2Net网络模型结构

    在这里插入图片描述
    网络的主体类似于U-Net的网络结构,在大的U-Net中,每一个小的block都是一个小型的类似于U-Net的结构,因此作者取名U2Net
    仔细观察,可以将网络中的block分成两类:
    第一类:En_1 ~ En_4 与 De_1 ~ De_4这8个block采用的block其实是一样的,只不过模块的深度不同。

    第二类:En_5、En_6、De_5

    • 在整个U2Net网络中,在Encoder阶段,每通过一个block都会进行一次下采样操作(下采样2倍,maxpool)
    • 在Decoder阶段,在每个block之间,都会进行一次上采样(2倍,bilinear)

    2、block模块结构解析

    在 En_1 与 De_1 模块中,采用的 block 是RSU-7;
    En_2 与 De_2采用的 block 是RSU-6(RSU-6相对于RSU-7 就是少了一个下采样卷积以及上采样卷积的部分,RSU-6 block只会下采样16倍,RSU-7 block下采样的32倍);
    En_3 与 De_3采用的 block 是RSU-5
    En_4 与 De_4采用的 block 是RSU-4
    En_5、En_6、De_5采用的block是RSU-4F
    (使用RSU-4F的原因:因为数据经过En_1 ~ En4 下采样处理后对应特征图的高与宽就已经相对比较小了,如果再继续下采样就会丢失很多上下文信息,作者为了保留上下文信息,就对En_5、En_6、De_5不再进行下采样了而是在RSU-4F的模块中,将下采样、上采样结构换成了膨胀卷积)

    RSU-7模块

    在这里插入图片描述详细结构图解
    在这里插入图片描述

    RSU-4F

    在这里插入图片描述

    saliency map fusion module

    saliency map fusion module模块是将每个阶段的特征图进行融合,得到最终的预测概率图,即下图中,红色框标注的模块
    在这里插入图片描述
    其会收集De_1、De_2、De_3、De_4、De_5、En_6模块的输出,将这些输出分别通过一个3x3的卷积层(这些卷积层的kerner的个数都是为1)输出的featuremap的channel是为1的,在经过双线性插值算法将得到的特征图还原回输入图像的大小;再将得到的6个特征图进行concant拼接;在经过一个1x1的卷积层以及sigmoid激活函数,最终得到融合之后的预测概率图。

    U2Net网络结构详细参数配置

    在这里插入图片描述
    u2net_full大小为176.3M、u2net_lite大小为4.7M

    RSU模块代码实现

    在这里插入图片描述

    class RSU(nn.Module):
        def __init__(self, height: int, in_ch: int, mid_ch: int, out_ch: int):
            super().__init__()
    
            assert height >= 2
            self.conv_in = ConvBNReLU(in_ch, out_ch)
    
            encode_list = [DownConvBNReLU(out_ch, mid_ch, flag=False)]
            decode_list = [UpConvBNReLU(mid_ch * 2, mid_ch, flag=False)]
            for i in range(height - 2):
                encode_list.append(DownConvBNReLU(mid_ch, mid_ch))
                decode_list.append(UpConvBNReLU(mid_ch * 2, mid_ch if i < height - 3 else out_ch))
    
            encode_list.append(ConvBNReLU(mid_ch, mid_ch, dilation=2))
            self.encode_modules = nn.ModuleList(encode_list)
            self.decode_modules = nn.ModuleList(decode_list)
    
        def forward(self, x: torch.Tensor) -> torch.Tensor:
            x_in = self.conv_in(x)
    
            x = x_in
            encode_outputs = []
            for m in self.encode_modules:
                x = m(x)
                encode_outputs.append(x)
    
            x = encode_outputs.pop()
            for m in self.decode_modules:
                x2 = encode_outputs.pop()
                x = m(x, x2)
    
            return x + x_in
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33

    RSU4F模块代码实现

    在这里插入图片描述

    class RSU4F(nn.Module):
        def __init__(self, in_ch: int, mid_ch: int, out_ch: int):
            super().__init__()
            self.conv_in = ConvBNReLU(in_ch, out_ch)
            self.encode_modules = nn.ModuleList([ConvBNReLU(out_ch, mid_ch),
                                                 ConvBNReLU(mid_ch, mid_ch, dilation=2),
                                                 ConvBNReLU(mid_ch, mid_ch, dilation=4),
                                                 ConvBNReLU(mid_ch, mid_ch, dilation=8)])
    
            self.decode_modules = nn.ModuleList([ConvBNReLU(mid_ch * 2, mid_ch, dilation=4),
                                                 ConvBNReLU(mid_ch * 2, mid_ch, dilation=2),
                                                 ConvBNReLU(mid_ch * 2, out_ch)])
    
        def forward(self, x: torch.Tensor) -> torch.Tensor:
            x_in = self.conv_in(x)
    
            x = x_in
            encode_outputs = []
            for m in self.encode_modules:
                x = m(x)
                encode_outputs.append(x)
    
            x = encode_outputs.pop()
            for m in self.decode_modules:
                x2 = encode_outputs.pop()
                x = m(torch.cat([x, x2], dim=1))
    
            return x + x_in
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29

    u2net_full与u2net_lite模型配置函数

    def u2net_full(out_ch: int = 1):
        cfg = {
            # height, in_ch, mid_ch, out_ch, RSU4F, side     side:表示是否要收集当前block的输出
            "encode": [[7, 3, 32, 64, False, False],      # En1
                       [6, 64, 32, 128, False, False],    # En2
                       [5, 128, 64, 256, False, False],   # En3
                       [4, 256, 128, 512, False, False],  # En4
                       [4, 512, 256, 512, True, False],   # En5
                       [4, 512, 256, 512, True, True]],   # En6
            # height, in_ch, mid_ch, out_ch, RSU4F, side
            "decode": [[4, 1024, 256, 512, True, True],   # De5
                       [4, 1024, 128, 256, False, True],  # De4
                       [5, 512, 64, 128, False, True],    # De3
                       [6, 256, 32, 64, False, True],     # De2
                       [7, 128, 16, 64, False, True]]     # De1
        }
    
        return U2Net(cfg, out_ch)
    
    
    def u2net_lite(out_ch: int = 1):
        cfg = {
            # height, in_ch, mid_ch, out_ch, RSU4F, side
            "encode": [[7, 3, 16, 64, False, False],  # En1
                       [6, 64, 16, 64, False, False],  # En2
                       [5, 64, 16, 64, False, False],  # En3
                       [4, 64, 16, 64, False, False],  # En4
                       [4, 64, 16, 64, True, False],  # En5
                       [4, 64, 16, 64, True, True]],  # En6
            # height, in_ch, mid_ch, out_ch, RSU4F, side
            "decode": [[4, 128, 16, 64, True, True],  # De5
                       [4, 128, 16, 64, False, True],  # De4
                       [5, 128, 16, 64, False, True],  # De3
                       [6, 128, 16, 64, False, True],  # De2
                       [7, 128, 16, 64, False, True]]  # De1
        }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36

    U2Net网络整体定义类

    class U2Net(nn.Module):
        def __init__(self, cfg: dict, out_ch: int = 1):
            super().__init__()
            assert "encode" in cfg
            assert "decode" in cfg
            self.encode_num = len(cfg["encode"])
    
            encode_list = []
            side_list = []
            for c in cfg["encode"]:
                # c: [height, in_ch, mid_ch, out_ch, RSU4F, side]
                assert len(c) == 6
                encode_list.append(RSU(*c[:4]) if c[4] is False else RSU4F(*c[1:4]))     # 判断当前是构建RSU模块,还是构建RSU4F模块
    
                if c[5] is True:
                    side_list.append(nn.Conv2d(c[3], out_ch, kernel_size=3, padding=1))
            self.encode_modules = nn.ModuleList(encode_list)
    
            decode_list = []
            for c in cfg["decode"]:
                # c: [height, in_ch, mid_ch, out_ch, RSU4F, side]
                assert len(c) == 6
                decode_list.append(RSU(*c[:4]) if c[4] is False else RSU4F(*c[1:4]))
    
                if c[5] is True:
                    side_list.append(nn.Conv2d(c[3], out_ch, kernel_size=3, padding=1))    # 收集当前block的输出
            self.decode_modules = nn.ModuleList(decode_list)
            self.side_modules = nn.ModuleList(side_list)
            self.out_conv = nn.Conv2d(self.encode_num * out_ch, out_ch, kernel_size=1)   # 构建一个1x1的卷积层,去融合来自不同尺度的信息
    
        def forward(self, x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]:
            _, _, h, w = x.shape
    
            # collect encode outputs
            encode_outputs = []
            for i, m in enumerate(self.encode_modules):
                x = m(x)
                encode_outputs.append(x)
                if i != self.encode_num - 1:  # 此处需要进行判断,因为在没通过一个encoder模块后,都需要进行下采样的,但最后一个模块后,是不需要下采样的
                    x = F.max_pool2d(x, kernel_size=2, stride=2, ceil_mode=True)
    
            # collect decode outputs
            x = encode_outputs.pop()
            decode_outputs = [x]
            for m in self.decode_modules:
                x2 = encode_outputs.pop()
                x = F.interpolate(x, size=x2.shape[2:], mode='bilinear', align_corners=False)
                x = m(torch.concat([x, x2], dim=1))
                decode_outputs.insert(0, x)
    
            # collect side outputs
            side_outputs = []
            for m in self.side_modules:
                x = decode_outputs.pop()
                x = F.interpolate(m(x), size=[h, w], mode='bilinear', align_corners=False)
                side_outputs.insert(0, x)
    
            x = self.out_conv(torch.concat(side_outputs, dim=1))
    
            if self.training:
                # do not use torch.sigmoid for amp safe
                return [x] + side_outputs     # 用于计算损失
            else:
                return torch.sigmoid(x)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65

    损失函数计算

    在这里插入图片描述
    如上图所示,红色框部分为每个分量与真实标签的交叉熵损失函数求和;黄色框标部分为将各个分量经双线性插值恢复至原始尺寸、进行concant处理、经过1x1的卷积核与sigmoid处理后的结果与真实标签的交叉熵损失函数。
    损失函数代码实现:

    import math
    import torch
    from torch.nn import functional as F
    import train_utils.distributed_utils as utils
    
    
    def criterion(inputs, target):
        losses = [F.binary_cross_entropy_with_logits(inputs[i], target) for i in range(len(inputs))]
        total_loss = sum(losses)
    
        return total_loss
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    评价指标

    在这里插入图片描述
    其中F-measure是在0~1之间的,数值越大,代表的网络分割效果越好;
    MAE是Mean Absolute Error的缩写,其值是在0~1之间的,越趋近于0,代表网络性能越好。

    数据集

    在这里插入图片描述
    在这里插入图片描述

    pytorch训练U2Net图像分割模型

    项目目录结构:

    ├── src: 搭建网络相关代码
    ├── train_utils: 训练以及验证相关代码
    ├── my_dataset.py: 自定义数据集读取相关代码
    ├── predict.py: 简易的预测代码
    ├── train.py: 单GPU或CPU训练代码
    ├── train_multi_GPU.py: 多GPU并行训练代码
    ├── validation.py: 单独验证模型相关代码
    ├── transforms.py: 数据预处理相关代码
    └── requirements.txt: 项目依赖
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    项目目录:
    在这里插入图片描述
    项目中u2net_full大小为176.3M、u2net_lite大小为4.7M,演示过程中,训练的为u2net_lite版本
    多GPU训练指令:
    pytorch版本为1.7

    CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env train_multi_GPU.py --data-path ./data_root
    
    • 1

    在这里插入图片描述
    训练过程损失函数,评估指标变化

    [epoch: 0] train_loss: 3.0948 lr: 0.000500 MAE: 0.263 maxF1: 0.539 
    [epoch: 10] train_loss: 1.1108 lr: 0.000998 MAE: 0.111 maxF1: 0.729 
    [epoch: 20] train_loss: 0.8480 lr: 0.000993 MAE: 0.093 maxF1: 0.764 
    [epoch: 30] train_loss: 0.7438 lr: 0.000984 MAE: 0.086 maxF1: 0.776 
    [epoch: 40] train_loss: 0.6625 lr: 0.000971 MAE: 0.082 maxF1: 0.790 
    [epoch: 50] train_loss: 0.5897 lr: 0.000954 MAE: 0.077 maxF1: 0.801 
    [epoch: 60] train_loss: 0.5273 lr: 0.000934 MAE: 0.071 maxF1: 0.808 
    [epoch: 70] train_loss: 0.5139 lr: 0.000911 MAE: 0.079 maxF1: 0.787 
    [epoch: 80] train_loss: 0.4775 lr: 0.000885 MAE: 0.073 maxF1: 0.801 
    [epoch: 90] train_loss: 0.4601 lr: 0.000855 MAE: 0.069 maxF1: 0.809 
    [epoch: 100] train_loss: 0.4529 lr: 0.000823 MAE: 0.065 maxF1: 0.805 
    [epoch: 110] train_loss: 0.4441 lr: 0.000788 MAE: 0.068 maxF1: 0.810 
    [epoch: 120] train_loss: 0.3991 lr: 0.000751 MAE: 0.066 maxF1: 0.806 
    [epoch: 130] train_loss: 0.3903 lr: 0.000712 MAE: 0.065 maxF1: 0.824 
    [epoch: 140] train_loss: 0.3770 lr: 0.000672 MAE: 0.060 maxF1: 0.823 
    [epoch: 150] train_loss: 0.3666 lr: 0.000630 MAE: 0.064 maxF1: 0.825 
    [epoch: 160] train_loss: 0.3530 lr: 0.000587 MAE: 0.060 maxF1: 0.829 
    [epoch: 170] train_loss: 0.3557 lr: 0.000544 MAE: 0.063 maxF1: 0.820 
    [epoch: 180] train_loss: 0.3430 lr: 0.000500 MAE: 0.065 maxF1: 0.816 
    [epoch: 190] train_loss: 0.3366 lr: 0.000456 MAE: 0.059 maxF1: 0.832 
    [epoch: 200] train_loss: 0.3285 lr: 0.000413 MAE: 0.062 maxF1: 0.822 
    [epoch: 210] train_loss: 0.3197 lr: 0.000370 MAE: 0.058 maxF1: 0.829 
    [epoch: 220] train_loss: 0.3093 lr: 0.000328 MAE: 0.058 maxF1: 0.828 
    [epoch: 230] train_loss: 0.3071 lr: 0.000288 MAE: 0.058 maxF1: 0.827 
    [epoch: 240] train_loss: 0.2983 lr: 0.000249 MAE: 0.056 maxF1: 0.830 
    [epoch: 250] train_loss: 0.2932 lr: 0.000212 MAE: 0.060 maxF1: 0.825 
    [epoch: 260] train_loss: 0.2908 lr: 0.000177 MAE: 0.060 maxF1: 0.828 
    [epoch: 270] train_loss: 0.2895 lr: 0.000145 MAE: 0.057 maxF1: 0.832 
    [epoch: 280] train_loss: 0.2834 lr: 0.000115 MAE: 0.057 maxF1: 0.832 
    [epoch: 290] train_loss: 0.2762 lr: 0.000089 MAE: 0.056 maxF1: 0.833 
    [epoch: 300] train_loss: 0.2760 lr: 0.000066 MAE: 0.056 maxF1: 0.832 
    [epoch: 310] train_loss: 0.2752 lr: 0.000046 MAE: 0.057 maxF1: 0.832 
    [epoch: 320] train_loss: 0.2782 lr: 0.000029 MAE: 0.056 maxF1: 0.834 
    [epoch: 330] train_loss: 0.2744 lr: 0.000016 MAE: 0.056 maxF1: 0.832 
    [epoch: 340] train_loss: 0.2752 lr: 0.000007 MAE: 0.056 maxF1: 0.832 
    [epoch: 350] train_loss: 0.2739 lr: 0.000002 MAE: 0.057 maxF1: 0.831 
    [epoch: 359] train_loss: 0.2770 lr: 0.000000 MAE: 0.056 maxF1: 0.833 
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38

    模型测试

    import os
    import time
    
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    import torch
    from torchvision.transforms import transforms
    
    from src import u2net_full,u2net_lite
    
    
    def time_synchronized():
        torch.cuda.synchronize() if torch.cuda.is_available() else None
        return time.time()
    
    
    def main():
        weights_path = "./multi_train/model_best.pth"
        img_path = "./test_image.PNG"
        threshold = 0.5
    
        assert os.path.exists(img_path), f"image file {img_path} dose not exists."
    
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
        data_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Resize(320),
            transforms.Normalize(mean=(0.485, 0.456, 0.406),
                                 std=(0.229, 0.224, 0.225))
        ])
    
        origin_img = cv2.cvtColor(cv2.imread(img_path, flags=cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
    
        h, w = origin_img.shape[:2]
        img = data_transform(origin_img)
        img = torch.unsqueeze(img, 0).to(device)  # [C, H, W] -> [1, C, H, W]
    
        # model = u2net_full()
        model =u2net_lite()
        weights = torch.load(weights_path, map_location='cpu')
        if "model" in weights:
            model.load_state_dict(weights["model"])
        else:
            model.load_state_dict(weights)
        model.to(device)
        model.eval()
    
        with torch.no_grad():
            # init model
            img_height, img_width = img.shape[-2:]
            init_img = torch.zeros((1, 3, img_height, img_width), device=device)
            model(init_img)
    
            t_start = time_synchronized()
            pred = model(img)
            t_end = time_synchronized()
            print("inference time: {}".format(t_end - t_start))
            pred = torch.squeeze(pred).to("cpu").numpy()  # [1, 1, H, W] -> [H, W]
    
            pred = cv2.resize(pred, dsize=(w, h), interpolation=cv2.INTER_LINEAR)
            pred_mask = np.where(pred > threshold, 1, 0)
            origin_img = np.array(origin_img, dtype=np.uint8)
            seg_img = origin_img * pred_mask[..., None]
            plt.imshow(seg_img)
            plt.show()
            cv2.imwrite("pred_result.png", cv2.cvtColor(seg_img.astype(np.uint8), cv2.COLOR_RGB2BGR))
    
    
    if __name__ == '__main__':
        main()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72

    在这里插入图片描述

    训练的为u2net_full版本
    训练指标如下:

    [epoch: 0] train_loss: 2.7158 lr: 0.000500 MAE: 0.216 maxF1: 0.583 
    [epoch: 10] train_loss: 1.0359 lr: 0.000998 MAE: 0.105 maxF1: 0.745 
    [epoch: 20] train_loss: 0.7130 lr: 0.000993 MAE: 0.087 maxF1: 0.778 
    [epoch: 30] train_loss: 0.5375 lr: 0.000984 MAE: 0.077 maxF1: 0.810 
    [epoch: 40] train_loss: 0.4661 lr: 0.000971 MAE: 0.069 maxF1: 0.826 
    [epoch: 50] train_loss: 0.4181 lr: 0.000954 MAE: 0.065 maxF1: 0.823 
    [epoch: 60] train_loss: 0.3914 lr: 0.000934 MAE: 0.065 maxF1: 0.826 
    [epoch: 70] train_loss: 0.3353 lr: 0.000911 MAE: 0.059 maxF1: 0.840 
    [epoch: 80] train_loss: 0.2847 lr: 0.000885 MAE: 0.058 maxF1: 0.835 
    [epoch: 90] train_loss: 0.2977 lr: 0.000855 MAE: 0.056 maxF1: 0.843 
    [epoch: 100] train_loss: 0.2538 lr: 0.000823 MAE: 0.054 maxF1: 0.848 
    [epoch: 110] train_loss: 0.2653 lr: 0.000788 MAE: 0.052 maxF1: 0.848 
    [epoch: 120] train_loss: 0.2365 lr: 0.000751 MAE: 0.052 maxF1: 0.841 
    [epoch: 130] train_loss: 0.2397 lr: 0.000712 MAE: 0.056 maxF1: 0.843 
    [epoch: 140] train_loss: 0.2180 lr: 0.000672 MAE: 0.051 maxF1: 0.854 
    [epoch: 150] train_loss: 0.2060 lr: 0.000630 MAE: 0.051 maxF1: 0.853 
    [epoch: 160] train_loss: 0.2002 lr: 0.000587 MAE: 0.052 maxF1: 0.853 
    [epoch: 170] train_loss: 0.1952 lr: 0.000544 MAE: 0.050 maxF1: 0.859 
    [epoch: 180] train_loss: 0.1893 lr: 0.000500 MAE: 0.053 maxF1: 0.851 
    [epoch: 190] train_loss: 0.1838 lr: 0.000456 MAE: 0.050 maxF1: 0.852 
    [epoch: 200] train_loss: 0.1779 lr: 0.000413 MAE: 0.049 maxF1: 0.858 
    [epoch: 210] train_loss: 0.1745 lr: 0.000370 MAE: 0.052 maxF1: 0.851 
    [epoch: 220] train_loss: 0.1703 lr: 0.000328 MAE: 0.050 maxF1: 0.854 
    [epoch: 230] train_loss: 0.1667 lr: 0.000288 MAE: 0.049 maxF1: 0.855 
    [epoch: 240] train_loss: 0.1640 lr: 0.000249 MAE: 0.049 maxF1: 0.855 
    [epoch: 250] train_loss: 0.1618 lr: 0.000212 MAE: 0.049 maxF1: 0.855 
    [epoch: 260] train_loss: 0.1598 lr: 0.000177 MAE: 0.048 maxF1: 0.856 
    [epoch: 270] train_loss: 0.1580 lr: 0.000145 MAE: 0.049 maxF1: 0.856 
    [epoch: 280] train_loss: 0.1572 lr: 0.000115 MAE: 0.049 maxF1: 0.853 
    [epoch: 290] train_loss: 0.1561 lr: 0.000089 MAE: 0.047 maxF1: 0.857 
    [epoch: 300] train_loss: 0.1550 lr: 0.000066 MAE: 0.047 maxF1: 0.858 
    [epoch: 310] train_loss: 0.1543 lr: 0.000046 MAE: 0.048 maxF1: 0.854 
    [epoch: 320] train_loss: 0.1539 lr: 0.000029 MAE: 0.048 maxF1: 0.854 
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35

    在这里插入图片描述

  • 相关阅读:
    epoch, batch, iteration
    八大排序 (上)
    12-Go语言接口interface
    YOLOv5项目实战(3)— 如何批量命名数据集中的图片
    【HTML——旋转火焰】(效果+代码)
    todoList清单(HTML+CSS+JavaScript)
    Centos7部署gitlab
    【复杂链表的复制】
    android端MifareClassicTool
    Linux基本指令(一)
  • 原文地址:https://blog.csdn.net/guoqingru0311/article/details/133814862