• EM@直线的参数方程


    abstract

    • 平面直线的参数方程的3种表示形式
    • 直线参数方程间的转换

    直线参数方程

    • 以下从不同角度推导直线参数方程
    • 分别记为第1,2,3形式参数方程

    从运动轨迹的角度

    • 直线可以看作是质点匀速运动的曲线
    • 设质点从 M 0 ( x 0 , y 0 ) M_0(x_0,y_0) M0(x0,y0)出发,沿着与 x x x轴成 α \alpha α角的方向作匀速直线运动,其速录为 v 0 v_0 v0,把速度再 x , y x,y x,y轴上分解,大小分别为 v x = v 0 cos ⁡ α v_x=v_0\cos\alpha vx=v0cosα, v y = v 0 sin ⁡ α v_y=v_0\sin{\alpha} vy=v0sinα
    • M ( x , y ) M(x,y) M(x,y) t t t时刻质点所在位置,则如下参数方程组(1) ( t ⩾ 0 ) (t\geqslant{0}) (t0)
      • x = x 0 + v x t = x 0 + t v 0 cos ⁡ α x=x_0+v_x{t}=x_0+tv_0\cos\alpha x=x0+vxt=x0+tv0cosα;
      • y = y 0 + v y t = y 0 + t v 0 sin ⁡ α y=y_0+v_y{t}=y_0+tv_0\sin\alpha y=y0+vyt=y0+tv0sinα;
    • 若不考虑物理意义,取参数 t ∈ ( − ∞ , + ∞ ) t\in(-\infin,+\infin) t(,+),方程组(1)就是直线的一种参数方程,参数为 t t t

    从普通方程转换导参数方程

    • 设直线的点斜式方程为 y − y 0 = k ( x − x 0 ) y-y_0=k(x-x_0) yy0=k(xx0)
      • 其中 k = tan ⁡ α k=\tan{\alpha} k=tanα, α \alpha α直线的倾斜角( α ∈ [ 0 , π ) \alpha\in[0,\pi) α[0,π));
      • y − y 0 = tan ⁡ α ( x − x 0 ) y-y_0=\tan{\alpha}(x-x_0) yy0=tanα(xx0)= sin ⁡ α cos ⁡ α ( x − x 0 ) \frac{\sin{\alpha}}{\cos\alpha}(x-x_0) cosαsinα(xx0), ( α ≠ π 2 ) (\alpha\neq{\frac{\pi}{2}}) (α=2π)
      • x − x 0 cos ⁡ α \frac{x-x_0}{\cos{\alpha}} cosαxx0= y − y 0 sin ⁡ α \frac{y-y_0}{\sin{\alpha}} sinαyy0,令其比值为参数 t t t,即有
        • x − x 0 = t cos ⁡ α x-x_0=t\cos\alpha xx0=tcosα, y − y 0 y-y_0 yy0= t sin ⁡ α t\sin\alpha tsinα
        • 这里的参数 t t t有明显的几何意义: ∣ t ∣ |t| t表示直线上的任一点 M M M到定点 M 0 M_0 M0的距离
      • 整理:得方程组(2)参数 t ∈ R t\in{\mathbb{R}} tR,
        • x = x 0 + t cos ⁡ α x=x_0+t\cos{\alpha} x=x0+tcosα;
        • y = y 0 + t sin ⁡ α y=y_0+t\sin\alpha y=y0+tsinα

    向量法

    • 设直线过点 M 0 ( x 0 , y 0 ) M_0(x_0,y_0) M0(x0,y0),且与平面向量 a = ( l , m ) \bold{a}=(l,m) a=(l,m)平行 ( l , m ≠ 0 ) (l,m\neq{0}) (l,m=0),

    • 在直线上任取点 M ( x , y ) M(x,y) M(x,y),则向量 M 0 M → / / a \overrightarrow{M_0M}//\bold{a} M0M //a, M 0 M → \overrightarrow{M_0M} M0M = ( x − x 0 , y − y 0 ) (x-x_0,y-y_0) (xx0,yy0)

    • 两向量平行的充要条件是 x − x 0 l = y − y 0 m \frac{x-x_0}{l}=\frac{y-y_0}{m} lxx0=myy0,记该比值式比值为 t t t,

    • 整理得方程组(3)

      • x = x 0 + l t x=x_0+lt x=x0+lt,
      • y = y 0 + m t y=y_0+mt y=y0+mt,
      • 参数 t ∈ R t\in\mathbb{R} tR

    参数方程间的转换

    从第3型转化为第2型方程组

    • 方法1:

      • 设(3)转换的第2型方程组为

        • x = x 0 + u cos ⁡ α x=x_0+u\cos\alpha x=x0+ucosα
        • y = y 0 + u sin ⁡ α y=y_0+u\sin\alpha y=y0+usinα
      • 和(3)比较可知, u cos ⁡ α = l t u\cos\alpha=lt ucosα=lt; u sin ⁡ α = m t u\sin\alpha=mt usinα=mt,则 tan ⁡ α = m l \tan{\alpha}=\frac{m}{l} tanα=lm

      • 只要求出 cos ⁡ α \cos\alpha cosα, sin ⁡ α \sin\alpha sinα关于 l , m l,m l,m的表示式即可:

        • cos ⁡ α \cos\alpha cosα= ± l m 2 + l 2 \pm{\frac{l}{\sqrt{m^2+l^2}}} ±m2+l2 l

        • sin ⁡ α = ± m m 2 + l 2 \sin\alpha=\pm\frac{m}{\sqrt{m^2+l^2}} sinα=±m2+l2 m

        • 根据 α \alpha α的来取定两个式子的符号:

        • cos ⁡ α = l m 2 + l 2 \cos\alpha=\frac{l}{\sqrt{m^2+l^2}} cosα=m2+l2 l

        • sin ⁡ α = m m 2 + l 2 \sin\alpha=\frac{m}{\sqrt{m^2+l^2}} sinα=m2+l2 m

    • 方法2:

      • 由于2型方程中的 α \alpha α是直线的倾斜角,因此,根据直线某个同向方向向量 ( l , m ) (l,m) (l,m)可得
      • l 1 l_1 l1: cos ⁡ α = l m 2 + l 2 \cos\alpha=\frac{l}{\sqrt{m^2+l^2}} cosα=m2+l2 l; sin ⁡ α = m m 2 + l 2 \sin\alpha=\frac{m}{\sqrt{m^2+l^2}} sinα=m2+l2 m
      • l 2 l_2 l2: cos ⁡ α = − l m 2 + l 2 \cos\alpha=-\frac{l}{\sqrt{m^2+l^2}} cosα=m2+l2 l; sin ⁡ α = − m m 2 + l 2 \sin\alpha=-\frac{m}{\sqrt{m^2+l^2}} sinα=m2+l2 m
      • 两组都可以:验证:
        • l 1 l_1 l1: x = x 0 + t cos ⁡ α x=x_0+t\cos{\alpha} x=x0+tcosα; y = y 0 + t sin ⁡ α y=y_0+t\sin\alpha y=y0+tsinα
        • l 2 l_2 l2: x = x 0 − t cos ⁡ α x=x_0-t\cos{\alpha} x=x0tcosα; y = y 0 − t sin ⁡ α y=y_0-t\sin\alpha y=y0tsinα
        • t = 1 t=1 t=1 ( x 0 + cos ⁡ α , y 0 + sin ⁡ α ) (x_0+\cos\alpha,y_0+\sin\alpha) (x0+cosα,y0+sinα) t = − 1 t=-1 t=1 ( x 0 − cos ⁡ α , y 0 − sin ⁡ α ) (x_0-\cos\alpha,y_0-\sin\alpha) (x0cosα,y0sinα)都同时在 l 1 , l 2 l_1,l_2 l1,l2上,说明 l 1 , l 2 l_1,l_2 l1,l2是同一条直线
        • 或者分别将 l 1 l_1 l1, l 2 l_2 l2化为普通方程,可得相同的直角坐标方程: y − y 0 x − x 0 = tan ⁡ α \frac{y-y_0}{x-x_0}=\tan{\alpha} xx0yy0=tanα
    • 设直线 x = 5 + 3 t x=5+3t x=5+3t; y = 10 − 4 t y=10-4t y=104t;将其表示为第2形式参数方程

    • 从第3型转化为第2型:

      • cos ⁡ α = 3 3 2 + 4 2 \cos\alpha=\frac{3}{\sqrt{3^2+4^2}} cosα=32+42 3= 3 5 \frac{3}{5} 53; sin ⁡ α \sin\alpha sinα= − 4 3 2 + 4 2 \frac{-4}{\sqrt{3^2+4^2}} 32+42 4= − 4 5 -\frac{4}{5} 54
      • 另一组取值 cos ⁡ α = − 3 5 \cos\alpha=-\frac{3}{5} cosα=53, sin ⁡ α = 4 5 \sin\alpha=\frac{4}{5} sinα=54也可以
      • 两组取值都有( tan ⁡ α = − 4 3 \tan\alpha=-\frac{4}{3} tanα=34)
      • 所以
        • x = 5 + 3 5 u x=5+\frac{3}{5}u x=5+53u; y = 10 − 4 5 u y=10-\frac{4}{5}u y=1054u
        • x = 5 − 3 5 u x=5-\frac{3}{5}u x=553u; y = 10 + 4 5 u y=10+\frac{4}{5}u y=10+54u
  • 相关阅读:
    .net 温故知新:【10】.NET ORM框架EFCore使用入门之CodeFirs、DBFirst
    k8s学习--YAML资源清单文件托管服务nginx
    atcoder abc357
    品牌公关稿件怎么写?纯干货
    如何设计线程安全的 HashMap?
    Java学习记录
    vue3 antd多级动态菜单(二)后台管理系统(两种方法过滤有无子菜单children)
    Java——String类
    上海亚商投顾:三大指数小幅下跌 两市成交金额创年内新低
    [DRAFT] LLVM ThinLTO原理分析
  • 原文地址:https://blog.csdn.net/xuchaoxin1375/article/details/133858652