• hugging face tansformer实战篇-阅读理解任务


    from datasets import load_dataset, DatasetDict
    from transformers import AutoTokenizer, AutoModelForQuestionAnswering, TrainingArguments, Trainer, DefaultDataCollator
    import nltk
    
    nltk.download('punkt')
    datasets = DatasetDict.load_from_disk("/remote-home/cs_tcci_huangyuqian/code/transformer-code-master/02-NLP Tasks/10-question_answering/mrc_data")
    tokenizer = AutoTokenizer.from_pretrained("/remote-home/cs_tcci_huangyuqian/code/bert/chinese-macbert-base")
    model = AutoModelForQuestionAnswering.from_pretrained("/remote-home/cs_tcci_huangyuqian/code/bert/chinese-macbert-base")
    
    def process_func(examples):
        tokenized_examples = tokenizer(text=examples["question"],
                                       text_pair=examples["context"],
                                       return_offsets_mapping=True,
                                       return_overflowing_tokens=True,
                                       stride=128,
                                       max_length=384, truncation="only_second", padding="max_length")
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        start_positions = []
        end_positions = []
        example_ids = []
        for idx, _ in enumerate(sample_mapping):
            answer = examples["answers"][sample_mapping[idx]]
            start_char = answer["answer_start"][0]
            end_char = start_char + len(answer["text"][0])
            # 定位答案在token中的起始位置和结束位置
            # 一种策略,我们要拿到context的起始和结束,然后从左右两侧向答案逼近
            context_start = tokenized_examples.sequence_ids(idx).index(1)
            context_end = tokenized_examples.sequence_ids(idx).index(None, context_start) - 1
            offset = tokenized_examples.get("offset_mapping")[idx]
            # 判断答案是否在context中
            if offset[context_end][1] < start_char or offset[context_start][0] > end_char:
                start_token_pos = 0
                end_token_pos = 0
            else:
                token_id = context_start
                while token_id <= context_end and offset[token_id][0] < start_char:
                    token_id += 1
                start_token_pos = token_id
                token_id = context_end
                while token_id >= context_start and offset[token_id][1] > end_char:
                    token_id -= 1
                end_token_pos = token_id
            start_positions.append(start_token_pos)
            end_positions.append(end_token_pos)
            example_ids.append(examples["id"][sample_mapping[idx]])
            tokenized_examples["offset_mapping"][idx] = [
                (o if tokenized_examples.sequence_ids(idx)[k] == 1 else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][idx])
            ]
    
        tokenized_examples["example_ids"] = example_ids
        tokenized_examples["start_positions"] = start_positions
        tokenized_examples["end_positions"] = end_positions
        return tokenized_examples
    tokenied_datasets = datasets.map(process_func, batched=True, remove_columns=datasets["train"].column_names)
    import collections
    # example 和 feature的映射
    example_to_feature = collections.defaultdict(list)
    for idx, example_id in enumerate(tokenied_datasets["train"]["example_ids"][:10]):
        example_to_feature[example_id].append(idx)
    import numpy as np
    import collections
    
    def get_result(start_logits, end_logits, exmaples, features):
    
        predictions = {}
        references = {}
    
        # example 和 feature的映射
        example_to_feature = collections.defaultdict(list)
        for idx, example_id in enumerate(features["example_ids"]):
            example_to_feature[example_id].append(idx)
    
        # 最优答案候选
        n_best = 20
        # 最大答案长度
        max_answer_length = 30
    
        for example in exmaples:
            example_id = example["id"]
            context = example["context"]
            answers = []
            for feature_idx in example_to_feature[example_id]:
                start_logit = start_logits[feature_idx]
                end_logit = end_logits[feature_idx]
                offset = features[feature_idx]["offset_mapping"]
                start_indexes = np.argsort(start_logit)[::-1][:n_best].tolist()
                end_indexes = np.argsort(end_logit)[::-1][:n_best].tolist()
                for start_index in start_indexes:
                    for end_index in end_indexes:
                        if offset[start_index] is None or offset[end_index] is None:
                            continue
                        if end_index < start_index or end_index - start_index + 1 > max_answer_length:
                            continue
                        answers.append({
                            "text": context[offset[start_index][0]: offset[end_index][1]],
                            "score": start_logit[start_index] + end_logit[end_index]
                        })
            if len(answers) > 0:
                best_answer = max(answers, key=lambda x: x["score"])
                predictions[example_id] = best_answer["text"]
            else:
                predictions[example_id] = ""
            references[example_id] = example["answers"]["text"]
    
        return predictions, references
    from cmrc_eval import evaluate_cmrc
    
    def metirc(pred):
        start_logits, end_logits = pred[0]
        if start_logits.shape[0] == len(tokenied_datasets["validation"]):
            p, r = get_result(start_logits, end_logits, datasets["validation"], tokenied_datasets["validation"])
        else:
            p, r = get_result(start_logits, end_logits, datasets["test"], tokenied_datasets["test"])
        return evaluate_cmrc(p, r)
    args = TrainingArguments(
        output_dir="models_for_qa",
        per_device_train_batch_size=32,
        per_device_eval_batch_size=32,
        evaluation_strategy="steps",
        eval_steps=200,
        save_strategy="epoch",
        logging_steps=50,
        num_train_epochs=3
    )
    trainer = Trainer(
        model=model,
        args=args,
        train_dataset=tokenied_datasets["train"],
        eval_dataset=tokenied_datasets["validation"],
        data_collator=DefaultDataCollator(),
        compute_metrics=metirc
    )
    trainer.train()
    from transformers import pipeline
    
    pipe = pipeline("question-answering", model=model, tokenizer=tokenizer, device=0)
    pipe(question="小明在哪里上班?", context="小明在北京上班")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138

    https://www.bilibili.com/video/BV1rs4y1k7FX/?spm_id_from=333.788&vd_source=c88ccb26cdf0efeef470b1ac71b5deff

    下载punkt安装包:链接点这里 提取码:lgs1
    下载完成后解压在任一nltk_data路径下的tokenizers目录下即可!
    在这里插入图片描述

    {'eval_loss': 1.326411247253418, 'eval_avg': 75.89373757381225, 'eval_f1': 85.64892280217559, 'eval_em': 66.1385523454489, 'eval_total': 3219, 'eval_skip': 0, 'eval_runtime': 47.4837, 'eval_samples_per_second': 133.246, 'eval_steps_per_second': 4.17, 'epoch': 3.0}
    100%|███████████████████████████████████████| 1800/1800 [24:01<00:00,  2.07it/s]
    100%|█████████████████████████████████████████| 198/198 [00:47<00:00,  5.88it/s]
    {'train_runtime': 1443.1595, 'train_samples_per_second': 39.89, 'train_steps_per_second': 1.247, 'train_loss': 1.1403807406955295, 'epoch': 3.0}
    100%|███████████████████████████████████████| 1800/1800 [24:02<00:00,  1.25it/s]
    {'score': 0.4938580095767975, 'start': 3, 'end': 7, 'answer': '北京上班'}
    
    进程已结束,退出代码0
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    在这里插入图片描述

  • 相关阅读:
    软件测试用例设计方法
    NPM 常用命令(十二)
    不同的量化交易软件速度差距大吗?
    请问登陆小程序想要先阅读在同意但是为什么不行呢
    【最近抖音上元宇宙虚拟项目七国争霸,直播互动游戏源码解析】
    echarts中地图使用的地图数据格式GeoJSON
    卡塔尔世界杯︱足球游戏的打开方式
    Web存储
    139. 单词拆分
    cin处理用户异常输入
  • 原文地址:https://blog.csdn.net/qq_48566899/article/details/133855035