• C++位图,布隆过滤器


    本期我们来学习位图,布隆过滤器等相关知识,以及模拟实现,需求前置知识

    C++-哈希Hash-CSDN博客

    C++-封装unordered_KLZUQ的博客-CSDN博客

    目录

    位图

    布隆过滤器

    海量数据面试题

    全部代码


    位图

    我们先来看一道面试题

    40 亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在
    40 亿个数中。【腾讯】

     这是一个查找在不在的问题,我们该如何解决呢?使用set可以吗?排序+二分查找可以吗?

    如果但从效率来看,它们都是longN,但是都不行,40亿整数是160亿字节,换算下来大约是16G左右,内存是不会给我们开16G的,如果用set更恐怖,除了存整形,还要存各种附带的东西,left,right,parent,颜色等等,红黑树,哈希表这些都是有附带消耗的

    这是一个在不在的问题,所以我们可以用0和1来表示存在,所以这里可以用比特位来标记,我们开2^32个比特位进行标记,这里和哈希的直接定址法一样,我们这里是开范围,而且2^32比特位是0.5G左右

    此时我们来写需要的结构,我们用vector来实现,但是此时又有一个问题,什么类型的大小是一个比特位?没有,但是我们仔细回忆的话,位运算和位段都是可以实现一个比特位的

    我们这里要实现两个接口,一个set一个reset,分别是将x映射的位置标记为1和0

    一个int是32个比特位,假设此时x=80,我们首先要计算出x在第几个整形的位置,我们用x/32即可,在该整形的第几个位上面,我们可以用x%32,我们带入计算一下,80/32是2,刚好在第二个整形(从第0个开始),再用80%32是16,64+16是80,所以位置刚好是下标

    这里还有一个问题,我们的机器其实是小端机

    也就是说在内存中其实是这样的

    比如我们这里存了一个1,在内存中的存储就是这样的

    1. //x映射的位置标记位1
    2. void set(size_t x)
    3. {
    4. size_t i = x / 32;
    5. size_t j = x % 32;
    6. _a[i] |= (1<
    7. }
    8. //x映射的位置标记位0
    9. void reset(size_t x)
    10. {
    11. size_t i = x / 32;
    12. size_t j = x % 32;
    13. _a[i] &= (~(1 << j));
    14. }

    我们实现这两个函数,使用位运算就可以巧妙的解决问题

    set我们让它的那个位置 | 上1,reset我们让那个位置&上~1(这里1用来移位,所以没有&0)

    接下来我们要判断某个位置是0还是1

    1. bool test(size_t x)
    2. {
    3. size_t i = x / 32;
    4. size_t j = x % 32;
    5. return _a[i] & (1 << j);
    6. }

    我们&1即可,如果是0,返回则为假,是1返回真,注意这里是&,不是&=

    我们再加上构造函数,开一下空间,这里向上取整

    接着我们测试一下,没有问题

    下面我们要来完成面试题,首先我们要开42亿的空间(不是40亿,题目说的是40亿个不重复,有可能比40亿大)

    我们在这里写INT_MAX可以吗?不行,INT_MAX是21亿多

    我们应该用这个,无符号的最大值

    或者用更简单的办法,写个-1即可,因为这里是无符号,-1的补码是全1

    手动写16进制也可以

    另外位图在库里面也是有的 

    有各种接口,我们记住test,set和reset即可,其他的基本用不到

    我们来看一些位图的应用

    1. 给定 100 亿个整数,设计算法找到只出现一次的整数?
    2. 给两个文件,分别有 100 亿个整数,我们只有 1G 内存,如何找到两个文件交集?
    3. 位图应用变形: 1 个文件有 100 亿个 int 1G 内存,设计算法找到出现次数不超过 2 次的所有整数

     我们看第一个,100亿个整数,只出现一次

    我们之前用1个位标记在不在,现在我们可以用2个位来表示状态,2个位可以表示出4种状态,我们用3种即可,00表示不在,01表示出现一次,10出现2次及以上,我们把位图改造一下即可解决

    还有更省力的方法,我们用bitset来完成

    开两个位图,第一个的第一位和第二个的第一位结合起来就是一个数的状态,依次类推

    为了方便我们先把之前的myset改名和库里面一样的bitset

    1. template<size_t N>
    2. class twobitset
    3. {
    4. public:
    5. void set(size_t x)
    6. {
    7. //00 -> 01
    8. if (!_bs1.test(x) && !_bs2.test(x))
    9. {
    10. _bs2.set(x);
    11. }//01 -> 10
    12. else if(!_bs1.test(x) && _bs2.test(x))
    13. {
    14. _bs1.set(x);
    15. _bs2.reset(x);
    16. }
    17. // 本身是10代表出现2次及以上,就不变
    18. }
    19. bool is_once(size_t x)
    20. {
    21. return !_bs1.test(x) && _bs2.test(x);
    22. }
    23. private:
    24. bitset _bs1;
    25. bitset _bs2;
    26. };

    我们实现一个towbitset,实现一个set接口,对于出现的数字,如果00就变为01,01就变为10,10不用变,然后提供一个isonce,判断出现一次的数

    我们简单测试一下,没有问题 

    下面再看第二个问题,找两个文件的交集

    我们把一个文件的所有值映射到位图,然后另一个文件来判断在不在可以吗?

    可以,但是会有一些问题,比如第一个文件里有一个3,第二个文件里有3个3,那么这里得到的结果也是3个3,是需要进行去重的

    我们来看更好的方法

    我们把两个文件分别映射到两个位图,存在为1,不存在为0,然后对应的位置&一下即可,或者对应位置都为1的就是交集

    比如这样写

    我们再看第三个问题

     不超过2次就是1次和2次,我们还是用2个位来表示,00表示0次,01表示1次,10表示2次,11表示2次以上,解决思路类似问题1

    布隆过滤器

    刚才的问题都是数字,如果是string呢?比如文件1和文件2找交集,里面都是字符串,比如“语文“,”数学“,”英语“这些
    我们把这些字符串计算成对应成整形,映射到位图里,然后按刚才的思路走就行了,不过这样写会有一些问题,就是冲突,比如还有一个字符串”物理“,它和语文计算出的整形是一样的,映射到了同一个位置,是会受到影响的,就存在误判了

    那有什么办法可以解决这个问题吗?

    答案是不能,冲突是无法避免的,但是我们可以减少冲突

    布隆过滤器是 由布隆( Burton Howard Bloom )在 1970 年提出的 一种紧凑型的、比较巧妙的 率型数据结构 ,特点是 高效地插入和查询,可以用来告诉你 某样东西一定不存在或者可能存 ,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式 不仅可以提升查询效率,也 可以节省大量的内存空间

     举个例子,你要和一个网友去面基,网友告诉你当天他穿的黑色裤子,背着白色的书包,在见面地点你一定不会认错吗?不一定,虽然提供了两个信息,但是还是会有冲突,所以我们只能提供更多的信息来降低冲突,但是不管提供多少信息,在人足够多的情况下还是可能认错

    再回到我们的字符串,我们可以给一个字符串映射3个位置,虽然还可能会有认错,但是几率会低很多

    而且它们之间可能会有交叉

    我们新添加一个物理,甚至可能会有两个位置和前面的元素冲突,但是只要不全冲突就行,容错率是大大提升的

    应用场景:

    不需要精确的场景,比如快速判断昵称是否注册过,我们就可以把所有昵称放到数据库里,我们可以接受百分之3到5的误判率,比如一个昵称没有被使用,但是却显示被使用了,对于用户来说其实是没什么问题的,换一个即可

    假设我们需要精确,不容忍误判,我们可以这样玩,输入的不存在,就返回不存在,如果显示在,我们就去数据库再查一遍,以数据库的结果返回,这样可以减少不在的那些昵称要去查找的损耗,这里就是过滤器的作用,过滤掉了一些,降低数据库的负载压力,提高效率(为什么不全去数据库找?因为太慢了),这也是为什么他叫过滤器的原因

    下面我们来对字符串实现过滤器,我们前面使用了字符串哈希算法,这里就需要用到它了,但是这里还有一个问题,会存在双重冲突的问题

    第一个是两个字符串不同的,但转出来的整形是相同的,第二个是用除留余数法映射后可能回到相同的位置

    基于这两个问题,布隆就想到了映射多个位置,所以就有了布隆过滤器

    1. //BloomFilter.h
    2. struct BKDRHash
    3. {
    4. size_t operator()(const string& str)
    5. {
    6. register size_t hash = 0;
    7. for (auto ch : str)
    8. {
    9. hash = hash * 131 + ch;
    10. }
    11. return hash;
    12. }
    13. };
    14. struct APHash
    15. {
    16. size_t operator()(const string& str)
    17. {
    18. register size_t hash = 0;
    19. size_t ch;
    20. for (size_t i = 0; i < str.size(); i++)
    21. {
    22. size_t ch = str[i];
    23. if ((i & 1) == 0)
    24. {
    25. hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
    26. }
    27. else
    28. {
    29. hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
    30. }
    31. }
    32. return hash;
    33. }
    34. };
    35. struct DJBHash
    36. {
    37. size_t operator()(const string& str)
    38. {
    39. register size_t hash = 5381;
    40. for (auto ch : str)
    41. {
    42. hash += (hash << 5) + ch;
    43. }
    44. return hash;
    45. }
    46. };
    47. template<size_t N,
    48. class K = string,
    49. class Hash1 = BKDRHash,
    50. class Hash2 = APHash,
    51. class Hash3 = DJBHash>
    52. class BloomFilter
    53. {
    54. public:
    55. void Set(const K& key)
    56. {
    57. size_t hash1 = Hash1()(key) % N;
    58. _bs.set(hash1);
    59. size_t hash2 = Hash2()(key) % N;
    60. _bs.set(hash2);
    61. size_t hash3 = Hash3()(key) % N;
    62. _bs.set(hash3);
    63. }
    64. bool Test(const K& key)
    65. {
    66. size_t hash1 = Hash1()(key) % N;
    67. if (_bs.test(hash1) == false)
    68. return false;
    69. size_t hash2 = Hash2()(key) % N;
    70. if (_bs.test(hash2) == false)
    71. return false;
    72. size_t hash3 = Hash3()(key) % N;
    73. if (_bs.test(hash3) == false)
    74. return false;
    75. return true;//存在误判
    76. }
    77. private:
    78. bitset _bs;
    79. };

    布隆过滤器实现起来就很简单了,我们借助库里面的bitset和三个字符串哈希算法来实现,然后我们将字符串哈希算法改为仿函数,我们只需要实现Set和Test即可

    我们简单测试一下,没有问题

    我们还可以把hash123打印出来看一看

    这里还是有一个冲突的,猪八戒的两个25

    如果数据足够多,空间小的话冲突的概率就会很大,这里沙悟净就出现了误判

    另外大家可以发现,我们这里是没有实现reset的,是不能实现的,举个例子,如果我们把上面的猪八戒reset了,5和6都会受影响,进而导致孙悟空和二郎神他们都会受影响,就不见了,所以一般不支持删除,删除一个值可能会影响其他值

    如果想要强行支持删除,那要付出很大的代价,比如可以使用多个位标识一个值,使用引用计数

    这里提供一篇知乎大佬写的布隆过滤器详解

    详解布隆过滤器的原理,使用场景和注意事项 - 知乎 (zhihu.com)

    建议大家看一看

     下面我们来测试一下,我们set大量的值,然后再给其他大量的值,这些值里有一部分在过滤器里,一部分不在,我们来看看不在过滤器里的值会不会出现误判(也就是原本不在过滤器里的值显示出在)

    1. void TestBloomFilter2()
    2. {
    3. srand(time(0));
    4. const size_t N = 100000;
    5. BloomFilter4> bf;
    6. std::vector v1;
    7. //std::string url = "https://www.cnblogs.com/-clq/archive/2012/05/31/2528153.html";
    8. std::string url = "猪八戒";
    9. for (size_t i = 0; i < N; ++i)
    10. {
    11. v1.push_back(url + std::to_string(i));
    12. }
    13. for (auto& str : v1)
    14. {
    15. bf.Set(str);
    16. }
    17. // v2跟v1是相似字符串集(前缀一样),但是不一样
    18. std::vector v2;
    19. for (size_t i = 0; i < N; ++i)
    20. {
    21. std::string urlstr = url;
    22. urlstr += std::to_string(9999999 + i);
    23. v2.push_back(urlstr);
    24. }
    25. size_t n2 = 0;
    26. for (auto& str : v2)
    27. {
    28. if (bf.Test(str)) // 误判
    29. {
    30. ++n2;
    31. }
    32. }
    33. cout << "相似字符串误判率:" << (double)n2 / (double)N << endl;
    34. // 不相似字符串集
    35. std::vector v3;
    36. for (size_t i = 0; i < N; ++i)
    37. {
    38. //string url = "zhihu.com";
    39. string url = "孙悟空";
    40. url += std::to_string(i + rand());
    41. v3.push_back(url);
    42. }
    43. size_t n3 = 0;
    44. for (auto& str : v3)
    45. {
    46. if (bf.Test(str))
    47. {
    48. ++n3;
    49. }
    50. }
    51. cout << "不相似字符串误判率:" << (double)n3 / (double)N << endl;
    52. }

    我们来看一看

    根据上面的测试结果来看,只要你舍得开空间,误判率是可以降低很多的,另外数据样本也是会有影响的,我们用了猪八戒这个字符串来测试,如果用上面很长的网址又是另一个结果,不过差别不会太大,而且只要我们把空间变大,误判率就会下降,一般推荐5到10倍左右

    海量数据面试题

    哈希切割
    给一个超过 100G 大小的 log file, log 中存着 IP 地址 , 设计算法找到出现次数最多的 IP 地址?
    与上题条件相同,如何找到 top K IP ?如何直接用 Linux 系统命令实现?
    位图应用
    1. 给定 100 亿个整数,设计算法找到只出现一次的整数?
    2. 给两个文件,分别有 100 亿个整数,我们只有 1G 内存,如何找到两个文件交集?
    3. 位图应用变形: 1 个文件有 100 亿个 int 1G 内存,设计算法找到出现次数不超过 2 次的所有整数
    布隆过滤器
    1. 给两个文件,分别有 100 亿个 query ,我们只有 1G 内存,如何找到两个文件交集?分别给出
    精确算法和近似算法
    2. 如何扩展 BloomFilter 使得它支持删除元素的操作

     这些题我们讲过了部分,我们来看过滤器的1,要求给出精确算法,这里就需要用到哈希切分

    假设平均一个query(查询)是30byte,100亿是3000亿字节,1G大约是10亿字节,也就是说一共是300G左右,而且还是两个这样的文件,现在我们只有1G内存

    我们可以把文件切成一个一个的小文件,但是切成小文件后,交集该怎么找呢?一个一个的再去组合测试吗?这样太慢了

    我们可以用哈希切分,比如我们把文件切成1000分,但不是平均切分,i = Hash(query) % 1000

    i是多少,query就进入第i个小文件,两个文件都用这样的方式来处理

    画出来大概就是这样,此时我们只需要对应编号的找即可,比如A0和B0找,A1和B1找即可

    哈希切分的效果是,A和B中相同的query一定会分别进入Ai和Bi编号相同的小文件,比如一个query在文件A里经过hash,然后%1000,得到了500,那么如果B里面也有这个query,它也会经过一样的步骤,所以得到的i是相同的,进入小文件的编号也就是一样的,这里有点像哈希桶,同一个桶里就是冲突的,但是也有不冲突的,大多数的这种问题都是可以用哈希切分来解决

    这里其实还有一个问题没有解决,找交集,是从Ai中读出来,然后放到set里,再从Bi中读取query,看在不在set,如果在,就是交集,就是可以找到Ai和Bi的交集,这里的切分,如果是平均切分就是一个文件300M,但我们是哈希切分,如果冲突太多,会导致某个Ai文件过大,甚至超过1G(别忘了set也要消耗内存),那该怎么办?

    这里会有两个场景,比如Ai有5G,场景1,4G都是相同,1G是冲突,场景2,大多数是冲突

    这里场景2我们可以换个哈希函数再次切分,一直切,是可以解决的,但是场景1不可以,相同的是切不开的,并且我们是无法区别到底是场景1还是场景2的

    解决方案:1.先把Ai的query读到一个set,如果set的insert报错抛异常(bad_alloc),那么就说明大多数query是冲突,如果能全部读出来,insert到set里面,那么说明Ai中有大量相同的query(set自己可以去重)

    2.如果抛异常,说明有大量冲突,我们换一个哈希函数,进行二次切分

    我们再看下一个问题

    这道题还可以扩展成出现次数最多的K个ip地址

    同样的,我们还是使用哈希切分,比如我们切成300份,i = Hash(query) % 300

    相同的ip一定会进入同一个小文件,之后我们用map分别统计每个小文件中ip出现的次数即可,出现次数最多的K个我们建小堆即可

    全部代码

    1. #pragma once
    2. #include
    3. using namespace std;
    4. //bitset.h
    5. namespace bai
    6. {
    7. template<size_t N>
    8. class bitset
    9. {
    10. public:
    11. bitset()
    12. {
    13. size_t num = N / 32 + 1;
    14. _a.resize(num);
    15. }
    16. //x映射的位置标记位1
    17. void set(size_t x)
    18. {
    19. size_t i = x / 32;
    20. size_t j = x % 32;
    21. _a[i] |= (1<
    22. }
    23. //x映射的位置标记位0
    24. void reset(size_t x)
    25. {
    26. size_t i = x / 32;
    27. size_t j = x % 32;
    28. _a[i] &= (~(1 << j));
    29. }
    30. bool test(size_t x)
    31. {
    32. size_t i = x / 32;
    33. size_t j = x % 32;
    34. return _a[i] & (1 << j);
    35. }
    36. private:
    37. vector<int> _a;
    38. };
    39. template<size_t N>
    40. class twobitset
    41. {
    42. public:
    43. void set(size_t x)
    44. {
    45. //00 -> 01
    46. if (!_bs1.test(x) && !_bs2.test(x))
    47. {
    48. _bs2.set(x);
    49. }//01 -> 10
    50. else if(!_bs1.test(x) && _bs2.test(x))
    51. {
    52. _bs1.set(x);
    53. _bs2.reset(x);
    54. }
    55. // 本身是10代表出现2次及以上,就不变
    56. }
    57. bool is_once(size_t x)
    58. {
    59. return !_bs1.test(x) && _bs2.test(x);
    60. }
    61. private:
    62. bitset _bs1;
    63. bitset _bs2;
    64. };
    65. }
    1. #pragma once
    2. #include
    3. #include
    4. #include
    5. #include
    6. using namespace std;
    7. //BloomFilter.h
    8. struct BKDRHash
    9. {
    10. size_t operator()(const string& str)
    11. {
    12. register size_t hash = 0;
    13. for (auto ch : str)
    14. {
    15. hash = hash * 131 + ch;
    16. }
    17. return hash;
    18. }
    19. };
    20. struct APHash
    21. {
    22. size_t operator()(const string& str)
    23. {
    24. register size_t hash = 0;
    25. size_t ch;
    26. for (size_t i = 0; i < str.size(); i++)
    27. {
    28. size_t ch = str[i];
    29. if ((i & 1) == 0)
    30. {
    31. hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
    32. }
    33. else
    34. {
    35. hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
    36. }
    37. }
    38. return hash;
    39. }
    40. };
    41. struct DJBHash
    42. {
    43. size_t operator()(const string& str)
    44. {
    45. register size_t hash = 5381;
    46. for (auto ch : str)
    47. {
    48. hash += (hash << 5) + ch;
    49. }
    50. return hash;
    51. }
    52. };
    53. template<size_t N,
    54. class K = string,
    55. class Hash1 = BKDRHash,
    56. class Hash2 = APHash,
    57. class Hash3 = DJBHash>
    58. class BloomFilter
    59. {
    60. public:
    61. void Set(const K& key)
    62. {
    63. size_t hash1 = Hash1()(key) % N;
    64. _bs.set(hash1);
    65. size_t hash2 = Hash2()(key) % N;
    66. _bs.set(hash2);
    67. size_t hash3 = Hash3()(key) % N;
    68. _bs.set(hash3);
    69. }
    70. bool Test(const K& key)
    71. {
    72. size_t hash1 = Hash1()(key) % N;
    73. if (_bs.test(hash1) == false)
    74. return false;
    75. size_t hash2 = Hash2()(key) % N;
    76. if (_bs.test(hash2) == false)
    77. return false;
    78. size_t hash3 = Hash3()(key) % N;
    79. if (_bs.test(hash3) == false)
    80. return false;
    81. return true;//存在误判
    82. }
    83. private:
    84. bitset _bs;
    85. };

    以上即为本期全部内容,希望大家可以有所收获

    如有错误,还请指正

  • 相关阅读:
    RocketMQ快速入门_2. rocketmq 的应用场景、与其他mq的差异
    Spring Cloud Feign面试题
    时间序列预测中的数据分析->周期性、相关性、滞后性、趋势性、离群值等特性的分析方法
    优化理论12---- 既约梯度法
    基于springboot基于会员制医疗预约服务管理系统项目【项目源码+论文说明】计算机毕业设计
    复合类型(自定义类型)
    【NLP入门教程】二十二、深度学习与NLP简介
    2022年全球市场保偏带通滤波器总体规模、主要生产商、主要地区、产品和应用细分研究报告
    Dubbo启动时检查依赖
    Python在WRF模型自动化运行及前后处理中的应用
  • 原文地址:https://blog.csdn.net/KLZUQ/article/details/133604605