- import gym
-
- # Create environment
- env = gym.make("MountainCar-v0")
-
- eposides = 10
- for eq in range(eposides):
- obs = env.reset()
- done = False
- rewards = 0
- while not done:
- action = env.action_space.sample()
- obs, reward, done, action, info = env.step(action)
- env.render()
- rewards += reward
- print(rewards)
按照下文搭建MountainCar环境
往期文章:强化学习实践(三)基于gym搭建自己的环境(在gym0.26.2可运行)-CSDN博客
- import gym
- import numpy as np
-
- env = gym.make("GridWorld-v0")
-
- # Q-Learning settings
- LEARNING_RATE = 0.1 #学习率
- DISCOUNT = 0.95 #奖励折扣系数
- EPISODES = 100 #迭代次数
-
- SHOW_EVERY = 1000
-
- # Exploration settings
- epsilon = 1 # not a constant, qoing to be decayed
- START_EPSILON_DECAYING = 1
- END_EPSILON_DECAYING = EPISODES//2
- epsilon_decay_value = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)
-
- DISCRETE_OS_SIZE = [20, 20]
- discrete_os_win_size = (env.observation_space.high - env.observation_space.low) / DISCRETE_OS_SIZE
-
- print(discrete_os_win_size)
-
-
- def get_discrete_state(state):
-
- discrete_state = (state - env.observation_space.low)/discrete_os_win_size
-
- # discrete_state = np.array(state - env.observation_space.low, dtype=float) / discrete_os_win_size
-
- return tuple(discrete_state.astype(np.int64)) # we use this tuple to look up the 3 Q values for the available actions in the q-
-
-
- q_table = np.random.uniform(low=-2, high=0, size=(DISCRETE_OS_SIZE + [env.action_space.n]))
-
-
- for episode in range(EPISODES):
- state = env.reset()
- discrete_state = get_discrete_state(state)
-
- if episode % SHOW_EVERY == 0:
- render = True
- print(episode)
- else:
- render = False
-
- done = False
- while not done:
- if np.random.random() > epsilon:
- # Get action from Q table
- action = np.argmax(q_table[discrete_state])
- else:
- # Get random action
- action = np.random.randint(0, env.action_space.n)
-
- new_state, reward, done, _, c = env.step(action)
- new_discrete_state = get_discrete_state(new_state)
-
- # If simulation did not end yet after last step - update Q table
- if not done:
- # Maximum possible Q value in next step (for new state)
- max_future_q = np.max(q_table[new_discrete_state])
- # Current Q value (for current state and performed action)
- current_q = q_table[discrete_state + (action,)]
- # And here's our equation for a new Q value for current state and action
- new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * (reward + DISCOUNT * max_future_q)
- # Update Q table with new Q value
- q_table[discrete_state + (action,)] = new_q
- # Simulation ended (for any reson) - if goal position is achived - update Q value with reward directly
-
- elif new_state[0] >= env.goal_position:
- # q_table[discrete_state + (action,)] = reward
- q_table[discrete_state + (action,)] = 0
- print("we made it on episode {}".format(episode))
-
- discrete_state = new_discrete_state
-
- if render:
- env.render()
-
- # Decaying is being done every episode if episode number is within decaying range
- if END_EPSILON_DECAYING >= episode >= START_EPSILON_DECAYING:
- epsilon -= epsilon_decay_value
-
- np.save("q_table.npy", arr=q_table)
-
- env.close()
- import gym
- import numpy as np
-
-
- env = gym.make("GridWorld-v0")
-
- # Q-Learning settings
- LEARNING_RATE = 0.1
- DISCOUNT = 0.95
- EPISODES = 10
-
- DISCRETE_OS_SIZE = [20, 20]
- discrete_os_win_size = (env.observation_space.high - env.observation_space.low) / DISCRETE_OS_SIZE
-
- def get_discrete_state(state):
- discrete_state = (state - env.observation_space.low)/discrete_os_win_size
- return tuple(discrete_state.astype(np.int64)) # we use this tuple to look up the 3 Q values for the available actions in the q-
-
- q_table = np.load(file="q_table.npy")
-
- for episode in range(EPISODES):
- state = env.reset()
- discrete_state = get_discrete_state(state)
-
- rewards = 0
- done = False
- while not done:
- # Get action from Q table
- action = np.argmax(q_table[discrete_state])
- new_state, reward, done, _, c = env.step(action)
- new_discrete_state = get_discrete_state(new_state)
-
- rewards += reward
-
- # If simulation did not end yet after last step - update Q table
- if done and new_state[0] >= env.goal_position:
- print("we made it on episode {}, rewards {}".format(episode, rewards))
-
- discrete_state = new_discrete_state
- env.render()
-
- env.close()
-