• 机器学习-有监督算法-决策树和支持向量机


    决策树

    1. 训练:构造树,测试:从模型从上往下走一遍。
    2. 建树方法:ID3,C4.5,CART

    ID3

    • 以信息论为基础,以信息增益为衡量标准
    • 熵越小,混乱程度越小,不确定性越小
    • 信息熵:
      H ( D ) = − ∑ i = 1 n P ( D i ) log ⁡ 2 P ( D i ) H(D) = -\sum_{i=1}^{n} P(D_i) \log_{2} P(D_i) H(D)=i=1nP(Di)log2P(Di)
    • 条件熵:
      H ( D ∣ A ) = − ∑ i = 1 n ∣ D i ∣ ∣ D ∣ log ⁡ 2 ( ∣ D i ∣ ∣ D ∣ ) H(D|A) = -\sum_{i=1}^{n} \frac{|D_i|}{|D|} \log_{2} \left(\frac{|D_i|}{|D|}\right) H(DA)=i=1nDDilog2(DDi)
    • 信息增益:
      G ( D , A ) = H ( D ) − H ( D ∣ A ) G(D,A) = H(D) - H(D|A) G(D,A)=H(D)H(DA)
    • 步骤
      • 求特征对最后结果的信息熵,条件熵,和最后的信息增益
      • 选择信息增益最大的作为当前决策节点
      • 删除上一步使用的特征,用特征值划分不同的数据集合
      • 重复2,3步

    C4.5

    • ID3算法的改进
    • 利用信息增益率:
      G R ( D , A ) = G ( D , A ) H ( D ) G_R(D,A) = \frac{G(D,A)}{H(D)} GR(D,A)=H(D)G(D,A)
    • 预剪枝:边建树边剪枝,限制深度、叶子节点个数、叶子结点样本数、信息增益率
    • 后剪枝:建完树剪枝。用叶子节点替换非叶子节点,然后判断错误率是保持还是下降

    CART

    • 分类树利用基尼指数来进行分类,分类树最后叶子节点众数作为结果。
    • 回归树利用方差来进行分类,利用特征划分成子集后,各自自己方差要最小,总体方差和也要最小。回归树用最后的均值或中位数作为结果。

    支持向量积

    • 解决问题:什么样的分类结果最好
    • 监督学习、分类算法
    • 距离定义,决策面,优化目标
    • 拉格朗日乘子法
    • 软间隔
    • 核变换
  • 相关阅读:
    python 无监督生成模型
    quartz框架(七)-JobStore
    python
    电脑重装系统后Win11用户名怎么更改
    深入理解java虚拟机-虚拟机性能监控,故障处理工具
    使用RestTemplate 进行远程接口调用工具类
    .git 目录中有什么?
    初识 kubernetes
    鼠标和滚轮事件
    [网络篇]TCP SYN Flood Attack(洪范攻击)
  • 原文地址:https://blog.csdn.net/qq_61735602/article/details/133808413