《PyTorch深度学习实践》第二讲 线性模型 课后练习
问题描述

代码实现
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
x_data = [1.0, 2.0, 3.0]
y_data = [3.0, 5.0, 7.0]
def forward(x):
return x * w + b
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) * (y_pred - y)
mes_list = []
W = np.arange(0.0, 3.1, 0.1)
B = np.arange(0.0, 3.1, 0.1)
[w, b] = np.meshgrid(W, B)
l_sum = 0
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
print(y_pred_val)
loss_val = loss(x_val, y_val)
l_sum += loss_val
fig = plt.figure()
ax =fig.add_axes(Axes3D(fig))
ax.plot_surface(w, b, l_sum/3)
plt.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
实现效果
