题目链接:https://leetcode.cn/problems/longest-increasing-subsequence/
思路:定义dp[i]表示从0到i的闭区间的最长子序列长度。求任一个dp[i]都要用每一个数与该数比较。
dp[me] = max(dp[me], dp[j] + 1);
class Solution {
public int lengthOfLIS(int[] nums) {
if(nums.length == 1) return 1;
int[] dp = new int[nums.length];
Arrays.fill(dp, 1);
int max = 0;
for (int i = 1; i < nums.length; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j]+1);
}
}
max = Math.max(max, dp[i]);
}
return max;
}
}
题目链接:https://leetcode.cn/problems/longest-continuous-increasing-subsequence/
思路:连续数组单层循环即可,只要不连续就又从1开始,连续就累加。
class Solution {
public int findLengthOfLCIS(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = 1;
int max = 1;
for (int i = 1; i < nums.length; i++) {
if (nums[i] > nums[i-1]){
dp[i] = dp[i-1]+1;
}else {
dp[i] = 1;
}
if (dp[i] > max) max = dp[i];
}
return max;
}
}
题目链接:https://leetcode.cn/problems/maximum-length-of-repeated-subarray/
思路:依旧是从区间出发,定义dp[i][j]表示[0,i][0,j]区间中最长连续相等的子数组的长度。
class Solution {
public int findLength(int[] nums1, int[] nums2) {
int[][] dp = new int[nums1.length+1][nums2.length+1];
int max = 0;
for (int i = 1; i <= nums1.length; i++) {
for (int j = 1; j <= nums2.length; j++) {
if (nums1[i-1] == nums2[j-1]) dp[i][j] = dp[i-1][j-1]+1;
if (dp[i][j]>max) max = dp[i][j];
}
}
return max;
}
}