• 天猫用户重复购买预测(速通二)


    模型训练

    分类相关模型

    在这里插入图片描述

    1、逻辑回归分类模型

    在这里插入图片描述

    from sklearn.linear_model import LinearRegression
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler
    
    stdScaler = StandardScaler()
    X = stdScaler.fit_transform(train)
    
    # Split the data into a training set and a test set
    X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)
    
    clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X_train, y_train)
    clf.score(X_test, y_test)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    2、K近邻分类模型

    在这里插入图片描述

    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.preprocessing import StandardScaler
    
    stdScaler = StandardScaler()
    X = stdScaler.fit_transform(train)
    
    # Split the data into a training set and a test set
    X_train, X_test, y_train, y_test = train_test_split(X, target, random_state=0)
    
    clf = KNeighborsClassifier(n_neighbors=3).fit(X_train, y_train)
    clf.score(X_test, y_test)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    3、高斯贝叶斯分类模型

    在这里插入图片描述

    4、决策树分类模型

    在这里插入图片描述

    from sklearn import tree
    
    # Split the data into a training set and a test set
    X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
    
    clf = tree.DecisionTreeClassifier()
    clf = clf.fit(X_train, y_train)
    clf.score(X_test, y_test)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    5、集成学习分类模型

    集成学习分类模型主要包括Bagging、Boosting、 集成学习投票法、随机森林、LightGBM、极端随机树(ExtraTree, ET) 等常用方法和模型。

    Bagging:
    在这里插入图片描述

    from sklearn.ensemble import BaggingClassifier
    from sklearn.neighbors import KNeighborsClassifier
    
    # Split the data into a training set and a test set
    X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
    clf = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5, max_features=0.5)
    
    clf = clf.fit(X_train, y_train)
    clf.score(X_test, y_test)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    Boosting:

    在这里插入图片描述

    from sklearn.ensemble import GradientBoostingClassifier
    
    # Split the data into a training set and a test set
    X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
    clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0)
    
    clf = clf.fit(X_train, y_train)
    clf.score(X_test, y_test)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    集成学习投票法:
    在这里插入图片描述
    集成学习投票法的特点:

    ●绝对多数投票法:某标记超过半数。
    ●相对多数投票法:预测为得票最多的标记,若同时有多个标记的票最高,则从中随机选取一个。
    ●加权投票法: 提供了预测结果,与加权平均法类似。

    from sklearn import datasets
    from sklearn.model_selection import cross_val_score
    from sklearn.linear_model import LogisticRegression
    from sklearn.naive_bayes import GaussianNB
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.ensemble import VotingClassifier
    from sklearn.preprocessing import StandardScaler
    
    stdScaler = StandardScaler()
    X = stdScaler.fit_transform(train)
    y = target
    
    
    clf1 = LogisticRegression(solver='lbfgs', multi_class='multinomial', random_state=1)
    clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
    clf3 = GaussianNB()
    
    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')
    
    for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']):
        scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
        print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    随机森林:

    from sklearn.ensemble import RandomForestClassifier
    
    # Split the data into a training set and a test set
    X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
    clf = clf = RandomForestClassifier(n_estimators=10, max_depth=3, min_samples_split=12, random_state=0)
    
    clf = clf.fit(X_train, y_train)
    clf.score(X_test, y_test)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    LightGBM:

    LightGBM分类模型和前面介绍过的LightGBM回归模型相似,它可以支持高效率的并行训练,具有更快的训练速度、更低的内存消耗、更好的准确率、分布式支持、可以快速。

    import lightgbm
    
    X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)
    X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)
    
    clf = lightgbm
    
    train_matrix = clf.Dataset(X_train, label=y_train)
    test_matrix = clf.Dataset(X_test, label=y_test)
    params = {
              'boosting_type': 'gbdt',
              #'boosting_type': 'dart',
              'objective': 'multiclass',
              'metric': 'multi_logloss',
              'min_child_weight': 1.5,
              'num_leaves': 2**5,
              'lambda_l2': 10,
              'subsample': 0.7,
              'colsample_bytree': 0.7,
              'colsample_bylevel': 0.7,
              'learning_rate': 0.03,
              'tree_method': 'exact',
              'seed': 2017,
              "num_class": 2,
              'silent': True,
              }
    num_round = 10000
    early_stopping_rounds = 100
    model = clf.train(params, 
                      train_matrix,
                      num_round,
                      valid_sets=test_matrix,
                      early_stopping_rounds=early_stopping_rounds)
    pre= model.predict(X_valid,num_iteration=model.best_iteration)
    print('score : ', np.mean((pre[:,1]>0.5)==y_valid))
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36

    极端随机树:

    也称ET或Extra-Trees,与随机森林算法非常类似,由许多决策树构成。

    极端随机树模型与随机森林模型的主要区别:随机森林应用的是Bagging 模型,极端随机树使用所有的训练样本计算每棵决策树。随机森林是在一个随机子集内得到最佳的分叉属性,而极端随机树模型是依靠完全随机得到分叉值,进而实现对决策树进行分叉。

    from sklearn.ensemble import ExtraTreesClassifier
    
    # Split the data into a training set and a test set
    X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
    clf = ExtraTreesClassifier(n_estimators=10, max_depth=None, min_samples_split=2, random_state=0)
    
    clf = clf.fit(X_train, y_train)
    clf.score(X_test, y_test)
    clf.n_features_
    clf.feature_importances_[:10]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    AdaBoost模型:

    from sklearn.ensemble import AdaBoostClassifier
    
    # Split the data into a training set and a test set
    X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
    clf = AdaBoostClassifier(n_estimators=10)
    
    clf = clf.fit(X_train, y_train)
    clf.score(X_test, y_test)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    GDBT模型:

    from sklearn.ensemble import GradientBoostingClassifier
    
    # Split the data into a training set and a test set
    X_train, X_test, y_train, y_test = train_test_split(train, target, random_state=0)
    clf = GradientBoostingClassifier(n_estimators=10, learning_rate=1.0, max_depth=1, random_state=0)
    
    clf = clf.fit(X_train, y_train)
    clf.score(X_test, y_test)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    XGB模型:

    import xgboost
    
    X_train, X_test, y_train, y_test = train_test_split(train, target, test_size=0.4, random_state=0)
    X_test, X_valid, y_test, y_valid = train_test_split(X_test, y_test, test_size=0.5, random_state=0)
    
    clf = xgboost
    
    train_matrix = clf.DMatrix(X_train, label=y_train, missing=-1)
    test_matrix = clf.DMatrix(X_test, label=y_test, missing=-1)
    z = clf.DMatrix(X_valid, label=y_valid, missing=-1)
    params = {'booster': 'gbtree',
              'objective': 'multi:softprob',
              'eval_metric': 'mlogloss',
              'gamma': 1,
              'min_child_weight': 1.5,
              'max_depth': 5,
              'lambda': 100,
              'subsample': 0.7,
              'colsample_bytree': 0.7,
              'colsample_bylevel': 0.7,
              'eta': 0.03,
              'tree_method': 'exact',
              'seed': 2017,
              "num_class": 2
              }
    
    num_round = 10000
    early_stopping_rounds = 100
    watchlist = [(train_matrix, 'train'),
                 (test_matrix, 'eval')
                 ]
    
    model = clf.train(params,
                      train_matrix,
                      num_boost_round=num_round,
                      evals=watchlist,
                      early_stopping_rounds=early_stopping_rounds
                      )
    pre = model.predict(z,ntree_limit=model.best_ntree_limit)
    print('score : ', np.mean((pre[:,1]>0.3)==y_valid))
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41

    模型验证

    模型验证指标

    在这里插入图片描述

    特征优化

    特征选择技巧

    1、搜索算法

    当特征数量较多时,常用如下方法:

    穷举法(Exhaustive): 暴力穷尽。
    贪心法(Greedy Selection);线性时间。
    模拟退火( Simulated Annealing):随机尝试找最优。
    基因算法(Genetic Algorithm):组合深度优先尝试。
    邻居搜索(Variable Neighbor Search);利用相近关系搜索。

    2、特征选择方法

    特征选择的方法主要有过滤法(Filter)、 包装法(Wrapper) 和嵌入法( Embedded )。

  • 相关阅读:
    量子场论:微观世界的深刻探索
    XML DTD 初学
    个人课设---玩家血条(包括攻击掉血,复活重生功能)
    Python实现疫苗接种数据库管理——毕业设计经典案例
    南卡电容笔和wiwu哪款更值得入手?价格实惠且好用的电容笔对比
    常见的数据结构有哪些?
    【18年扬大真题】给定有m个整数的递增有序数组a和有n个整数的递减有序数组b,将a数组和b数组归并为递增有序的数组c
    java2022最新面试题及答案,轻松过秋招
    IC设计流程中需要使用到的文件
    u盘中删除的文件怎样才能恢复呢?
  • 原文地址:https://blog.csdn.net/weixin_45662626/article/details/133817710