目录
- class Solution {
- public:
- int massage(vector<int>& nums) {
-
- int n =nums.size();
- if(n == 0) return 0;
- vector<int> f(n);
- auto g = f;
- f[0] = nums[0];
-
- for(int i = 1;i < n;i++){
- f[i] = g[i-1] + nums[i];
- g[i] = max(f[i-1],g[i-1]);
- }
- return max(f[n-1],g[n-1]);
- }
- };
- class Solution {
- public:
- int rob1(vector<int>& nums,int l,int r) {
- if(l>r) return 0;
- int n =nums.size();
- if(n == 0) return 0;
- vector<int> f(n);
- auto g = f;
- f[l] = nums[l];
-
- for(int i = l;i <= r;i++){
- f[i] = g[i-1] + nums[i];
- g[i] = max(f[i-1],g[i-1]);
- }
- return max(f[r],g[r]);
- }
-
- int rob(vector<int>& nums) {
- int n = nums.size();
-
- int ret1 = rob1(nums,2,n-2)+nums[0];
- int ret2 = rob1(nums,1,n-1);
- return max(ret1,ret2);
- }
- };
- class Solution {
- public:
- int deleteAndEarn(vector<int>& nums) {
- int n = nums.size();
- const int N = 10001;
- int arr[N] = {0};
- for(auto e : nums)
- {
- arr[e] += e;
- }
-
- vector<int> f(N);
- auto g = f;
- for(int i = 1;i < N;i++){
- f[i] = g[i-1] + arr[i];
- g[i] = max(f[i-1],g[i-1]);
- }
- return max(f[N-1],g[N-1]);
- }
- };
- class Solution {
- public:
- int minCost(vector
int >>& costs) { - int n = costs.size();
- vector
int>> dp(n+1,vector<int>(3)); - for(int i = 1;i <= n;i++)
- {
- dp[i][0] = costs[i-1][0] + min(dp[i-1][1],dp[i-1][2]);
- dp[i][1] = costs[i-1][1] + min(dp[i-1][0],dp[i-1][2]);
- dp[i][2] = costs[i-1][2] + min(dp[i-1][0],dp[i-1][1]);
- }
- return min(dp[n][0],min(dp[n][1],dp[n][2]));
- }
- };
- class Solution {
- public:
- int maxProfit(vector<int>& prices) {
- int n = prices.size();
- vector
int>> dp(n,vector<int>(3)); - dp[0][0] = -prices[0];
-
- for(int i = 1;i < n;i++){
- dp[i][0] = max(dp[i-1][0],dp[i-1][1] - prices[i]);
- dp[i][1] = max(dp[i-1][1],dp[i-1][2]);
- dp[i][2] = dp[i-1][0]+prices[i];
- }
-
- return max(dp[n-1][1],dp[n-1][2]);
- }
- };
上一题用的是二维数组的第二维来表示多种状态,是因为状态比较多,如果像此题只有两种状态,就可以用两个函数,本质上是一样的。
- class Solution {
- public:
- int maxProfit(vector<int>& prices, int fee) {
- int n = prices.size();
- vector<int> f(n);
- auto g = f;
- f[0] = -prices[0];
-
- for(int i = 1;i < n;i++){
- f[i] = max(f[i-1],g[i-1] - prices[i]);
- g[i] = max(g[i-1],f[i-1]+prices[i]- fee);
- }
- return g[n-1];
- }
- };
- class Solution {
- public:
- const int INF = 0x3f3f3f3f;
- int maxProfit(vector<int>& prices) {
- int n = prices.size();
- vector
int>> f(n,vector<int>(3,-INF)); - auto g = f;
- f[0][0] = -prices[0];
- g[0][0] = 0;
- for(int i = 1;i < n;i++){
- for(int j = 0;j < 3;j++){
- f[i][j] = max(f[i-1][j],g[i-1][j] - prices[i]);
- g[i][j] = g[i-1][j];
- if(j >= 1)
- g[i][j] = max(g[i-1][j],f[i-1][j-1]+prices[i]);
- }
- }
- int ret = 0;
- for(int i = 0;i < 3;i++){
- ret = max(ret,g[n-1][i]);
- }
- return ret;
- }
- };
- class Solution {
- public:
- int maxProfit(int k, vector<int>& prices) {
- int n = prices.size();
- k = min(k,n/2);
- const int INF = 0x3f3f3f3f;
- vector
int>> f(n,vector<int>(k+1,-INF));//注意是k+1 - auto g = f;
- f[0][0] = -prices[0];
- g[0][0] = 0;
- for(int i = 1;i < n;i++){
- for(int j = 0;j <= k;j++){
- f[i][j] = max(f[i-1][j],g[i-1][j]-prices[i]);
- g[i][j] = g[i-1][j];
- if(j >= 1)
- g[i][j] = max(g[i-1][j],f[i-1][j-1]+prices[i]);
- }
- }
- int ret = 0;
- for(int j = 0;j <= k;j++){
- ret = max(ret,g[n-1][j]);
- }
- return ret;
- }
- };