有什么车辆调度算法的最新研究,比如用强化学习的方法?
https://www.zhihu.com/question/312332312
策略算法工程师之路-图优化算法(一)(二分图&最小费用最大流)
https://zhuanlan.zhihu.com/p/103825713
模拟退火(SA)算法求解容量受限的车辆路径(CVRP)问题
https://zhuanlan.zhihu.com/p/136992849
世界冠军之路:菜鸟车辆路径规划求解引擎研发历程
https://zhuanlan.zhihu.com/p/61939417
VRP相关知识整理
https://www.cnblogs.com/shankun/p/Vehicle_Routing_Problem.html
vrp算法有哪些?
https://www.zhihu.com/question/319111079
GD -> SGD -> ADAM
VRPPD(Vehicle Routing Problem with Pickup and Delivery):具有提货和交付的车辆路径规划问题。有一组车辆需要从仓库或起始点出发,分别访问一系列提货地点以收集货物,然后将货物交付到相应的交付地点,最终返回仓库或结束点。问题的目标通常是最小化总行驶距离、时间或成本,或者在满足一定的约束条件下,找到一组最佳的路线方案。
VRP : vehicle routing problems
CVRP:Capacitated Vehicle Routing Problem,有容量约束的车辆路径问题
SEC: Subtour Elimination Constraints
VRPB:VRP with Backhauls
VRPSPD:VRP with Simultaneous Pickup and Delivery
VRPDDP:VRP with Divisible Deliveries and Pickups
VSP:Vehicle Scheduling Problems
MVCTP:Multi-Vehicle Covering Tour Problem
PDP:Pickup-and-Delivery Problem
DARP:Dial-a-Ride Problem
PVRP:Periodic VRP
IRP: Inventory Routing Problems
SDVRP:Split Delivery VRP
2E-VRP:2-Echelon VRP
PTP:Profitable Tour Problem
CPTP:Capacitated PTP
TOP:Team Orienteering Problem
OP:Orienteering Problem
PCVRP:Prize-Collecting VRP
PCTSP:Prize-Collecting TSP
VRPPC:VRP with Private fleet and Common carrier
MV-TPP:Multiple Vehicle Traveling Purchaser Problem
PPVRP:Pallet-Packing VRP
VRPC:VRP with Compartments
DCVRP:Distance-constrained CVRP
VRPM:VRP with Multiple use of vehicles
MTVRP:Multi-Trip VRP
VRPTW:VRP with Time Windows
VRPSTW:VRP with Soft Time Windows
MDVRP:Multi(ple) Depot VRP
HFVRP:Heterogeneous or mixed Fleet VRP
TTRP:Truck-and-Trailer Routing Problem
VRPTT:VRP with Trailers and Transshipments
VRPMS:VRP with Multiple Synchronization constraints
OVRP:Open VRP
SCVRP:symmetric CVRP
ACVRP:asymmetric CVRP
AP:Assignment Problem
SST:Shortest Spanning Tree
GSEC:Generalized Subtour Elimination Constraints
CCC:Capacity Cut Constraints
SP:Set Partitioning
SC:Set Covering
CG:Column Generation
GrVRP:Graphical Vehicle Routing Problem
问题描述:顶点0表示仓库,N={1,2,…,n}表示客户集,车队集用K={1,2,…,|K|}表示,
q
i
q_i
qi表示第i个客户的需求,为客户集
S
⊆
N
S \subseteq N
S⊆N服务的小车开始于仓库0,只访问客户集S中的点一次,,然后返回到仓库0,用
c
i
j
c_{ij}
cij表示小车从点i到点j的运行成本,Q表示小车的容量
点集
V
=
{
0
}
∪
N
=
{
1
,
2
,
.
.
.
,
n
}
V=\{0\} \cup N = \{1,2,...,n\}
V={0}∪N={1,2,...,n}
无向边集
E
=
{
e
=
{
i
,
j
}
=
{
j
,
i
}
:
i
,
j
∈
V
,
i
≠
j
}
E=\{e=\{i, j\}=\{j, i\}:i, j \in V, i \ne j\}
E={e={i,j}={j,i}:i,j∈V,i=j},
c
i
j
c_{ij}
cij其中
i
,
j
∈
V
i, j \in V
i,j∈V
有向边集
A
=
{
(
i
,
j
)
∈
V
×
V
:
i
≠
j
}
A=\{(i, j) \in V \times V: i \ne j\}
A={(i,j)∈V×V:i=j}
无向图
G
=
(
V
,
E
,
c
i
j
,
q
i
)
G=(V,E, c_{ij}, q_i)
G=(V,E,cij,qi)
有向图
G
=
(
V
,
A
,
c
i
j
,
q
i
)
G=(V,A, c_{ij}, q_i)
G=(V,A,cij,qi)
q
0
=
0
q_0=0
q0=0
路线序列
r
=
(
i
0
,
i
1
,
i
2
,
.
.
.
,
i
s
,
i
s
+
1
)
,
i
0
=
i
s
+
1
=
0
,
S
=
{
i
1
,
i
2
,
.
.
.
,
i
s
}
⊆
N
r=(i_0,i_1,i_2,...,i_s,i_{s+1}),i_0=i_{s+1}=0,S=\{i_1,i_2,...,i_s\} \subseteq N
r=(i0,i1,i2,...,is,is+1),i0=is+1=0,S={i1,i2,...,is}⊆N,路由成本
c
(
r
)
=
∑
p
=
0
s
c
i
p
,
i
p
+
1
c(r)=\sum_{p=0}^s{c_{i_p,i_{p+1}}}
c(r)=∑p=0scip,ip+1,容量约束
q
(
S
)
=
∑
i
∈
S
q
i
≤
Q
q(S)=\sum_{i \in S}q_i \le Q
q(S)=∑i∈Sqi≤Q
无向图割集
δ
(
S
)
=
{
{
i
,
j
}
∈
E
:
i
∈
S
,
j
∉
S
}
\delta(S)=\{\{i,j\} \in E:i \in S, j \notin S\}
δ(S)={{i,j}∈E:i∈S,j∈/S}
有向图割集
δ
−
(
S
)
=
{
{
i
,
j
}
∈
A
,
i
∉
S
,
j
∈
S
}
,
δ
+
(
S
)
=
{
{
i
,
j
}
∈
A
,
i
∈
S
,
j
∉
S
}
\delta^-(S)=\{\{i,j\} \in A, i \notin S, j \in S\}, \delta^+(S)=\{\{i,j\} \in A, i \in S, j \notin S\}
δ−(S)={{i,j}∈A,i∈/S,j∈S},δ+(S)={{i,j}∈A,i∈S,j∈/S}
r
(
S
)
r(S)
r(S)表示服务于子客户集S需要的最小车辆路线数
紧凑形式
目标:
(
1.1
)
m
i
n
i
m
i
z
e
∑
(
i
,
j
)
∈
A
c
i
j
x
i
j
(1.1) minimize \sum_{(i, j) \in A} c_{ij}x_{ij}
(1.1)minimize∑(i,j)∈Acijxij
约束:
(
1.2
)
∑
j
∈
δ
−
(
i
)
x
i
j
=
1
,
∀
i
∈
N
(1.2) \sum_{j \in \delta^-(i)} x_{ij} = 1, \forall i \in N
(1.2)∑j∈δ−(i)xij=1,∀i∈N
∑
i
∈
δ
−
(
j
)
x
i
j
=
1
,
∀
j
∈
N
\sum_{i \in \delta^-(j)} x_{ij} = 1, \forall j \in N
∑i∈δ−(j)xij=1,∀j∈N
(
1.3
)
∑
j
∈
δ
+
(
0
)
x
0
j
=
∣
K
∣
(1.3) \sum_{j \in \delta^+(0)} x_{0j} = |K|
(1.3)∑j∈δ+(0)x0j=∣K∣
(
1.4
)
∑
(
i
,
j
)
∈
δ
+
(
S
)
x
i
j
≥
r
(
S
)
(1.4) \sum_{(i,j) \in \delta^+(S)} x_{ij} \ge r(S)
(1.4)∑(i,j)∈δ+(S)xij≥r(S)
(
1.5
)
x
i
j
∈
{
0
,
1
}
(1.5) x_{ij} \in \{0,1\}
(1.5)xij∈{0,1}
浓缩形式
目标
(
1.1
)
m
i
n
i
m
i
z
e
c
T
x
(1.1) minimize c^T x
(1.1)minimizecTx
约束
(
1.2
)
x
(
δ
+
(
i
)
)
=
1
,
x
(
δ
−
(
j
)
)
=
1
,
∀
i
∈
N
,
∀
j
∈
N
(1.2) x(\delta^+(i)) = 1,x(\delta^-(j)) = 1, \forall i \in N, \forall j \in N
(1.2)x(δ+(i))=1,x(δ−(j))=1,∀i∈N,∀j∈N
(
1.3
)
x
(
δ
+
(
0
)
)
=
∣
K
∣
(1.3) x(\delta^+(0)) = |K|
(1.3)x(δ+(0))=∣K∣
(
1.4
)
x
(
δ
+
(
S
)
)
≥
r
(
S
)
(1.4) x(\delta^+(S)) \ge r(S)
(1.4)x(δ+(S))≥r(S)
(
1.5
)
x
a
∈
{
0
,
1
}
,
a
∈
A
(1.5) x_a \in \{0,1\}, a \in A
(1.5)xa∈{0,1},a∈A
目标
(
1.1
)
m
i
n
i
m
i
z
e
c
T
x
(1.1) minimize c^T x
(1.1)minimizecTx
约束
(
1.2
)
x
(
δ
(
i
)
)
=
2
∀
i
∈
N
(1.2) x(\delta^(i)) = 2 \forall i \in N
(1.2)x(δ(i))=2∀i∈N
(
1.3
)
x
(
δ
(
0
)
)
=
2
∣
K
∣
(1.3) x(\delta^(0)) = 2|K|
(1.3)x(δ(0))=2∣K∣
(
1.4
)
x
(
δ
(
S
)
)
≥
2
r
(
S
)
(1.4) x(\delta^(S)) \ge 2r(S)
(1.4)x(δ(S))≥2r(S)
(
1.5
)
x
e
∈
{
0
,
1
,
2
}
,
∀
e
∈
δ
(
0
)
,
x
e
∈
{
0
,
1
}
∀
e
∈
E
−
δ
(
0
)
(1.5) x_e \in \{0,1,2\}, \forall e \in \delta(0), x_e \in \{0, 1\} \forall e \in E - \delta(0)
(1.5)xe∈{0,1,2},∀e∈δ(0),xe∈{0,1}∀e∈E−δ(0)
● NRP(node routing problem)
● ARP(Arc Routing Problems)
● Delivery and Collection
● Simple Visits and Vehicle Scheduling
● Alternative and Indirect Services
● Point-to-Point Transportation
● Repeated Supply
● Non-split and Split Services
● Combined Shipment and Multi-modal Service
● Routing with Profits and Service Selection
● Dynamic and Stochastic Routing
● Loading
● Route Length
● Multiple Use of Vehicles
● Time Windows and Scheduling Aspects
● Multiple Depot VRP
● Heterogeneous or mixed Fleet VRP
● Routing of Trucks and Trailers
● balancing constraints
● inter-route resource constraints
● Synchronization constraints
(1)Task synchronization
(2) Operation synchronization
(3) Movement synchronization
(4)Load synchronization
(5)Resource synchronization
● Single Objective Optimization
● Hierarchical Objectives
● Multi-criteria Optimization
● Branch-and-Bound
● column generation
● Branch-and-Cut