• 车辆调度算法


    参考资料

    有什么车辆调度算法的最新研究,比如用强化学习的方法?
    https://www.zhihu.com/question/312332312

    策略算法工程师之路-图优化算法(一)(二分图&最小费用最大流)
    https://zhuanlan.zhihu.com/p/103825713

    模拟退火(SA)算法求解容量受限的车辆路径(CVRP)问题
    https://zhuanlan.zhihu.com/p/136992849

    世界冠军之路:菜鸟车辆路径规划求解引擎研发历程
    https://zhuanlan.zhihu.com/p/61939417

    VRP相关知识整理
    https://www.cnblogs.com/shankun/p/Vehicle_Routing_Problem.html

    vrp算法有哪些?
    https://www.zhihu.com/question/319111079

    GD -> SGD -> ADAM

    交通管制类的算法

    Vehicle Routing Problems, Methods, and Applications, Second Edition笔记

    VRPPD(Vehicle Routing Problem with Pickup and Delivery):具有提货和交付的车辆路径规划问题。有一组车辆需要从仓库或起始点出发,分别访问一系列提货地点以收集货物,然后将货物交付到相应的交付地点,最终返回仓库或结束点。问题的目标通常是最小化总行驶距离、时间或成本,或者在满足一定的约束条件下,找到一组最佳的路线方案。
    VRP : vehicle routing problems
    CVRP:Capacitated Vehicle Routing Problem,有容量约束的车辆路径问题
    SEC: Subtour Elimination Constraints
    VRPB:VRP with Backhauls
    VRPSPD:VRP with Simultaneous Pickup and Delivery
    VRPDDP:VRP with Divisible Deliveries and Pickups
    VSP:Vehicle Scheduling Problems
    MVCTP:Multi-Vehicle Covering Tour Problem
    PDP:Pickup-and-Delivery Problem
    DARP:Dial-a-Ride Problem
    PVRP:Periodic VRP
    IRP: Inventory Routing Problems
    SDVRP:Split Delivery VRP
    2E-VRP:2-Echelon VRP
    PTP:Profitable Tour Problem
    CPTP:Capacitated PTP
    TOP:Team Orienteering Problem
    OP:Orienteering Problem
    PCVRP:Prize-Collecting VRP
    PCTSP:Prize-Collecting TSP
    VRPPC:VRP with Private fleet and Common carrier
    MV-TPP:Multiple Vehicle Traveling Purchaser Problem
    PPVRP:Pallet-Packing VRP
    VRPC:VRP with Compartments
    DCVRP:Distance-constrained CVRP
    VRPM:VRP with Multiple use of vehicles
    MTVRP:Multi-Trip VRP
    VRPTW:VRP with Time Windows
    VRPSTW:VRP with Soft Time Windows
    MDVRP:Multi(ple) Depot VRP
    HFVRP:Heterogeneous or mixed Fleet VRP
    TTRP:Truck-and-Trailer Routing Problem
    VRPTT:VRP with Trailers and Transshipments
    VRPMS:VRP with Multiple Synchronization constraints
    OVRP:Open VRP
    SCVRP:symmetric CVRP
    ACVRP:asymmetric CVRP
    AP:Assignment Problem
    SST:Shortest Spanning Tree
    GSEC:Generalized Subtour Elimination Constraints
    CCC:Capacity Cut Constraints
    SP:Set Partitioning
    SC:Set Covering
    CG:Column Generation
    GrVRP:Graphical Vehicle Routing Problem

    问题描述:顶点0表示仓库,N={1,2,…,n}表示客户集,车队集用K={1,2,…,|K|}表示, q i q_i qi表示第i个客户的需求,为客户集 S ⊆ N S \subseteq N SN服务的小车开始于仓库0,只访问客户集S中的点一次,,然后返回到仓库0,用 c i j c_{ij} cij表示小车从点i到点j的运行成本,Q表示小车的容量
    点集 V = { 0 } ∪ N = { 1 , 2 , . . . , n } V=\{0\} \cup N = \{1,2,...,n\} V={0}N={1,2,...,n}
    无向边集 E = { e = { i , j } = { j , i } : i , j ∈ V , i ≠ j } E=\{e=\{i, j\}=\{j, i\}:i, j \in V, i \ne j\} E={e={i,j}={j,i}:i,jV,i=j}, c i j c_{ij} cij其中 i , j ∈ V i, j \in V i,jV
    有向边集 A = { ( i , j ) ∈ V × V : i ≠ j } A=\{(i, j) \in V \times V: i \ne j\} A={(i,j)V×V:i=j}
    无向图 G = ( V , E , c i j , q i ) G=(V,E, c_{ij}, q_i) G=(V,E,cij,qi)
    有向图 G = ( V , A , c i j , q i ) G=(V,A, c_{ij}, q_i) G=(V,A,cij,qi)
    q 0 = 0 q_0=0 q0=0
    路线序列 r = ( i 0 , i 1 , i 2 , . . . , i s , i s + 1 ) , i 0 = i s + 1 = 0 , S = { i 1 , i 2 , . . . , i s } ⊆ N r=(i_0,i_1,i_2,...,i_s,i_{s+1}),i_0=i_{s+1}=0,S=\{i_1,i_2,...,i_s\} \subseteq N r=(i0,i1,i2,...,is,is+1),i0=is+1=0S={i1,i2,...,is}N,路由成本 c ( r ) = ∑ p = 0 s c i p , i p + 1 c(r)=\sum_{p=0}^s{c_{i_p,i_{p+1}}} c(r)=p=0scip,ip+1,容量约束 q ( S ) = ∑ i ∈ S q i ≤ Q q(S)=\sum_{i \in S}q_i \le Q q(S)=iSqiQ
    无向图割集 δ ( S ) = { { i , j } ∈ E : i ∈ S , j ∉ S } \delta(S)=\{\{i,j\} \in E:i \in S, j \notin S\} δ(S)={{i,j}E:iS,j/S}
    有向图割集 δ − ( S ) = { { i , j } ∈ A , i ∉ S , j ∈ S } , δ + ( S ) = { { i , j } ∈ A , i ∈ S , j ∉ S } \delta^-(S)=\{\{i,j\} \in A, i \notin S, j \in S\}, \delta^+(S)=\{\{i,j\} \in A, i \in S, j \notin S\} δ(S)={{i,j}A,i/S,jS},δ+(S)={{i,j}A,iS,j/S}
    r ( S ) r(S) r(S)表示服务于子客户集S需要的最小车辆路线数

    模型

    VRP1(有向图)

    紧凑形式
    目标:
    ( 1.1 ) m i n i m i z e ∑ ( i , j ) ∈ A c i j x i j (1.1) minimize \sum_{(i, j) \in A} c_{ij}x_{ij} (1.1)minimize(i,j)Acijxij
    约束:
    ( 1.2 ) ∑ j ∈ δ − ( i ) x i j = 1 , ∀ i ∈ N (1.2) \sum_{j \in \delta^-(i)} x_{ij} = 1, \forall i \in N (1.2)jδ(i)xij=1,iN
    ∑ i ∈ δ − ( j ) x i j = 1 , ∀ j ∈ N \sum_{i \in \delta^-(j)} x_{ij} = 1, \forall j \in N iδ(j)xij=1,jN
    ( 1.3 ) ∑ j ∈ δ + ( 0 ) x 0 j = ∣ K ∣ (1.3) \sum_{j \in \delta^+(0)} x_{0j} = |K| (1.3)jδ+(0)x0j=K
    ( 1.4 ) ∑ ( i , j ) ∈ δ + ( S ) x i j ≥ r ( S ) (1.4) \sum_{(i,j) \in \delta^+(S)} x_{ij} \ge r(S) (1.4)(i,j)δ+(S)xijr(S)
    ( 1.5 ) x i j ∈ { 0 , 1 } (1.5) x_{ij} \in \{0,1\} (1.5)xij{0,1}
    浓缩形式
    目标
    ( 1.1 ) m i n i m i z e c T x (1.1) minimize c^T x (1.1minimizecTx
    约束
    ( 1.2 ) x ( δ + ( i ) ) = 1 , x ( δ − ( j ) ) = 1 , ∀ i ∈ N , ∀ j ∈ N (1.2) x(\delta^+(i)) = 1,x(\delta^-(j)) = 1, \forall i \in N, \forall j \in N (1.2)x(δ+(i))=1,x(δ(j))=1,iN,jN
    ( 1.3 ) x ( δ + ( 0 ) ) = ∣ K ∣ (1.3) x(\delta^+(0)) = |K| (1.3)x(δ+(0))=K
    ( 1.4 ) x ( δ + ( S ) ) ≥ r ( S ) (1.4) x(\delta^+(S)) \ge r(S) (1.4)x(δ+(S))r(S)
    ( 1.5 ) x a ∈ { 0 , 1 } , a ∈ A (1.5) x_a \in \{0,1\}, a \in A (1.5)xa{0,1},aA

    VRP2(无向图)

    目标
    ( 1.1 ) m i n i m i z e c T x (1.1) minimize c^T x (1.1minimizecTx
    约束
    ( 1.2 ) x ( δ ( i ) ) = 2 ∀ i ∈ N (1.2) x(\delta^(i)) = 2 \forall i \in N (1.2)x(δ(i))=2∀iN
    ( 1.3 ) x ( δ ( 0 ) ) = 2 ∣ K ∣ (1.3) x(\delta^(0)) = 2|K| (1.3)x(δ(0))=2∣K
    ( 1.4 ) x ( δ ( S ) ) ≥ 2 r ( S ) (1.4) x(\delta^(S)) \ge 2r(S) (1.4)x(δ(S))2r(S)
    ( 1.5 ) x e ∈ { 0 , 1 , 2 } , ∀ e ∈ δ ( 0 ) , x e ∈ { 0 , 1 } ∀ e ∈ E − δ ( 0 ) (1.5) x_e \in \{0,1,2\}, \forall e \in \delta(0), x_e \in \{0, 1\} \forall e \in E - \delta(0) (1.5)xe{0,1,2},eδ(0),xe{0,1}eEδ(0)

    网络特征

    ● NRP(node routing problem)
    ● ARP(Arc Routing Problems)

    运行请求类型

    ● Delivery and Collection
    ● Simple Visits and Vehicle Scheduling
    ● Alternative and Indirect Services
    ● Point-to-Point Transportation
    ● Repeated Supply
    ● Non-split and Split Services
    ● Combined Shipment and Multi-modal Service
    ● Routing with Profits and Service Selection
    ● Dynamic and Stochastic Routing

    路线内约束

    ● Loading
    ● Route Length
    ● Multiple Use of Vehicles
    ● Time Windows and Scheduling Aspects

    车队特征

    ● Multiple Depot VRP
    ● Heterogeneous or mixed Fleet VRP
    ● Routing of Trucks and Trailers

    路线间约束

    ● balancing constraints
    ● inter-route resource constraints
    ● Synchronization constraints
    (1)Task synchronization
    (2) Operation synchronization
    (3) Movement synchronization
    (4)Load synchronization
    (5)Resource synchronization

    目标

    ● Single Objective Optimization
    ● Hierarchical Objectives
    ● Multi-criteria Optimization

    精确算法

    ● Branch-and-Bound
    ● column generation
    ● Branch-and-Cut

    启发式算法

    • Constructive Heuristics
      • Clarke and Wright Savings
      • Petal Algorith 花瓣算法
    • Classical Improvement Heuristics
      • Adaptive Large Neighborhood Search
    • Metaheuristics
      • Local Search Algorithms
        • Simulated Annealing
        • Deterministic Annealing
        • Tabu Search
        • Iterated Local Search
        • Variable Neighborhood Search
      • Population-Based Algorithms
        • Ant Colony Optimization(蚁群优化)
        • Genetic Algorithms(遗传算法)
        • Scatter Search (SS) and Path Relinking (PR)
  • 相关阅读:
    【软考】-- 操作系统(上)
    第6章 数据存储全方案——详解持久化技术
    LeetCode50天刷题计划(Day 16—— 两两交换链表中的节点(9.10-10.30)
    OpenBox(一个高效通用的黑盒优化系统)安装与使用
    14:00面试,14:06就出来了,问的问题过于变态了。。。
    GBase 8a之gbase_hdfs_protocol参数
    word+excel+ppt 每日更新,雷打不动,faceface
    Electron安装问题
    安泰科普:低频功率放大器工作原理
    【java实战项目】90分钟轻松学会java开发飞机大战小游戏
  • 原文地址:https://blog.csdn.net/wuli2496/article/details/133788981