• 【python海洋专题十七】读取几十年的OHC数据,画四季图


    本期内容

    读取多年数据,画四季图

    Part01.

    多年数据处理

    图片
    多年年平均的OHC分布

    图片
    春夏秋冬:

    ohc_all_new = np.reshape(ohc_new, (12, 80, 29, 27), order=‘C’)
    ohc_all_season_mean = np.mean(ohc_all_new, axis=1)
    ohc_season = np.reshape(ohc_all_season_mean, (3, 4, 29, 27), ‘C’)
    ohc_season_mean = np.mean(ohc_season, axis=0)

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    我看变化不大啊!不会数据处理问题吧!

    于是又画了一年的四季:

    一年的平均:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    tem_spr = (tem_all[2,:,:]+tem_all[3,:,:]+tem_all[4,:,:])/3

    3:sum季6-7-8

    tem_sum = (tem_all[5,:,:]+tem_all[6,:,:]+tem_all[7,:,:])/3

    4:aut季9-10-11

    tem_aut = (tem_all[8,:,:]+tem_all[9,:,:]+tem_all[10,:,:])/3

    5:win季12-1-2

    tem_win = (tem_all[0,:,:]+tem_all[1,:,:]+tem_all[11,:,:])/3

    一年的四季变化也不是很大。

    说明热含量一年四季变化就是不大哈!

    全文代码

    图片
    多年的四季:一年的四季:以前更新过了哈!

    # -*- coding: utf-8 -*-
    # %%
    # Importing related function packages
    import matplotlib.pyplot as plt
    import cartopy.crs as ccrs
    import cartopy.feature as feature
    import numpy as np
    import matplotlib.ticker as ticker
    from cartopy import mpl
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
    from matplotlib.font_manager import FontProperties
    from netCDF4 import Dataset
    from pylab import *
    import seaborn as sns
    from matplotlib import cm
    from pathlib import Path
    import xarray as xr
    import palettable
    from palettable.cmocean.diverging import Delta_4
    from palettable.colorbrewer.sequential import GnBu_9
    from palettable.colorbrewer.sequential import Blues_9
    from palettable.scientific.diverging import Roma_20
    from palettable.cmocean.diverging import Delta_20
    from palettable.scientific.diverging import Roma_20
    from palettable.cmocean.diverging import Balance_20
    from matplotlib.colors import ListedColormap
    import pickle
    
    
    # ----define reverse_colourmap----
    def reverse_colourmap(cmap, name='my_cmap_r'):
        reverse = []
        k = []
    
        for key in cmap._segmentdata:
            k.append(key)
            channel = cmap._segmentdata[key]
            data = []
    
            for t in channel:
                data.append((1 - t[0], t[2], t[1]))
            reverse.append(sorted(data))
    
        LinearL = dict(zip(k, reverse))
        my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)
        return my_cmap_r
    
    
    # ---colormap----
    cmap01 = Balance_20.mpl_colormap
    cmap0 = Blues_9.mpl_colormap
    cmap_r = reverse_colourmap(cmap0)
    cmap1 = GnBu_9.mpl_colormap
    cmap_r1 = reverse_colourmap(cmap1)
    cmap2 = Roma_20.mpl_colormap
    cmap_r2 = reverse_colourmap(cmap2)
    # -------------# 指定文件路径,实现批量读取满足条件的文件------------
    filepath = Path('E:\data\IAP\IAP_ocean_heat_content_data\IAP_Ocean_heat_content_0_2000m\\')
    filelist = list(filepath.glob('*.nc'))
    print(filelist)
    # -------------读取其中一个文件的经纬度数据,制作经纬度网格(这样就不需要重复读取)-------------------------
    a = Dataset(filelist[1])
    print(a)
    # 随便读取一个文件(一般默认需要循环读取的文件格式一致)
    f1 = xr.open_dataset(filelist[1])
    print(f1)
    # 提取经纬度(这样就不需要重复读取)
    lat = f1['lat'].data
    lon = f1['lon'].data
    # -------- find scs 's temp-----------
    print(np.where(lon >= 100))  # 99
    print(np.where(lon >= 123))  # 122
    print(np.where(lat >= 0))  # 90
    print(np.where(lat >= 25))  # 115
    # # 画图网格
    lon1 = lon[98:125]
    lat1 = lat[88:117]
    X, Y = np.meshgrid(lon1, lat1)
    # ----------4.for循环读取文件+数据处理------------------
    ohc_all = []
    for file in filelist:
        with xr.open_dataset(file) as f:
            ohc = f['OHC100'].data
            ohc_mon = ohc[88:117, 98:125]
            ohc_all.append(ohc_mon)
    ohc_all = np.array(ohc_all)
    type(ohc_all)
    print(type(ohc_all))
    print(ohc_all.shape)
    ohc_new = ohc_all[2:962, :, :]
    print(ohc_new.shape)
    ohc_all_new = np.reshape(ohc_new, (12, 80, 29, 27), order='C')
    print(ohc_all_new.shape)
    ohc_all_season_mean = np.mean(ohc_all_new, axis=1)
    print(ohc_all_season_mean.shape)
    ohc_season = np.reshape(ohc_all_season_mean, (3, 4, 29, 27), 'C')
    ohc_season_mean = np.mean(ohc_season, axis=0)
    print(ohc_season_mean)
    ohc_all_mean = np.mean(ohc_season_mean, axis=0)
    # -------------# plot  ------------
    scale = '50m'
    plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
    # 设置显示中文字体
    mpl.rcParams["font.sans-serif"] = ["SimHei"]
    fig = plt.figure(dpi=300, figsize=(3, 2), facecolor='w', edgecolor='blue')  # 设置一个画板,将其返还给fig
    ax = fig.add_axes([0.05, 0.08, 0.92, 0.8], projection=ccrs.PlateCarree(central_longitude=180))
    ax.set_extent([100, 123, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
    land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                       facecolor=feature.COLORS['land'])
    ax.add_feature(land, facecolor='0.6')
    ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
    cs = ax.contourf(X, Y, ohc_all_mean/1e10, levels=np.linspace(0, 1, 50), extend='both', cmap=cmap_r2,
                     transform=ccrs.PlateCarree())
    # ------color-bar设置------------
    cb = plt.colorbar(cs, ax=ax, extend='both', orientation='vertical', ticks=np.linspace(0, 1, 11))
    cb.set_label('焦耳(1e8J)', fontsize=4, color='k')  # 设置color-bar的标签字体及其大小
    cb.ax.set_title('OHC', fontsize=4, color='k')
    cb.ax.tick_params(labelsize=4, direction='in')  # 设置color-bar刻度字体大小。
    # cf = ax.contour(x, y, skt1[:, :], levels=np.linspace(16, 30, 5), colors='gray', linestyles='-',
    #                 linewidths=0.2, transform=ccrs.PlateCarree())
    # --------------图片 添加标题----------------
    ax.set_title('OHC', fontsize=4)
    # ------------------利用Formatter格式化刻度标签-----------------
    ax.set_xticks(np.arange(100, 123, 4), crs=ccrs.PlateCarree())  # 添加经纬度
    ax.set_xticklabels(np.arange(100, 123, 4), fontsize=4)
    ax.set_yticks(np.arange(0, 25, 2), crs=ccrs.PlateCarree())
    ax.set_yticklabels(np.arange(0, 25, 2), fontsize=4)
    ax.xaxis.set_major_formatter(LongitudeFormatter())
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    ax.tick_params(axis='x', top=True, which='major', direction='in', length=4, width=1, labelsize=5, pad=1, color='k')  # 刻度样式
    ax.tick_params(axis='y', right=True, which='major', direction='in', length=4, width=1, labelsize=5, pad=1, color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 123, 4), ylocs=np.arange(0, 25, 2),
                      linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
    gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
    plt.savefig('ohc_multi_year_mean.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
    plt.show()
    # -plot----
    # -------------# plot  ------------
    scale = '50m'
    plt.rcParams['font.sans-serif'] = ['Times New Roman']  # 设置整体的字体为Times New Roman
    # 设置显示中文字体
    mpl.rcParams["font.sans-serif"] = ["SimHei"]
    fig = plt.figure(dpi=300, figsize=(3, 2), facecolor='w', edgecolor='blue')  # 设置一个画板,将其返还给fig
    ax = fig.add_axes([0.05, 0.08, 0.92, 0.8], projection=ccrs.PlateCarree(central_longitude=180))
    ax.set_extent([100, 123, 0, 25], crs=ccrs.PlateCarree())  # 设置显示范围
    land = feature.NaturalEarthFeature('physical', 'land', scale, edgecolor='face',
                                       facecolor=feature.COLORS['land'])
    ax.add_feature(land, facecolor='0.6')
    ax.add_feature(feature.COASTLINE.with_scale('50m'), lw=0.3)  # 添加海岸线:关键字lw设置线宽; lifestyle设置线型
    cs = ax.contourf(X, Y, ohc_season_mean[0,:,:]/1e10, levels=np.linspace(0, 1, 50), extend='both', cmap=cmap_r2,
                     transform=ccrs.PlateCarree())
    # ------color-bar设置------------
    cb = plt.colorbar(cs, ax=ax, extend='both', orientation='vertical', ticks=np.linspace(0, 1, 11))
    cb.set_label('焦耳(1e8J)', fontsize=4, color='k')  # 设置color-bar的标签字体及其大小
    cb.ax.set_title('OHC', fontsize=4, color='k')
    cb.ax.tick_params(labelsize=4, direction='in')  # 设置color-bar刻度字体大小。
    # cf = ax.contour(x, y, skt1[:, :], levels=np.linspace(16, 30, 5), colors='gray', linestyles='-',
    #                 linewidths=0.2, transform=ccrs.PlateCarree())
    # --------------图片 添加标题----------------
    ax.set_title('OHC', fontsize=4)
    # ------------------利用Formatter格式化刻度标签-----------------
    ax.set_xticks(np.arange(100, 123, 4), crs=ccrs.PlateCarree())  # 添加经纬度
    ax.set_xticklabels(np.arange(100, 123, 4), fontsize=4)
    ax.set_yticks(np.arange(0, 25, 2), crs=ccrs.PlateCarree())
    ax.set_yticklabels(np.arange(0, 25, 2), fontsize=4)
    ax.xaxis.set_major_formatter(LongitudeFormatter())
    ax.yaxis.set_major_formatter(LatitudeFormatter())
    ax.tick_params(axis='x', top=True, which='major', direction='in', length=4, width=1, labelsize=5, pad=1, color='k')  # 刻度样式
    ax.tick_params(axis='y', right=True, which='major', direction='in', length=4, width=1, labelsize=5, pad=1, color='k')  # 更改刻度指向为朝内,颜色设置为蓝色
    gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, xlocs=np.arange(100, 123, 4), ylocs=np.arange(0, 25, 2),
                      linewidth=0.25, linestyle='--', color='k', alpha=0.8)  # 添加网格线
    gl.top_labels, gl.bottom_labels, gl.right_labels, gl.left_labels = False, False, False, False
    plt.savefig('ohc_multi_year_spr.jpg', dpi=600, bbox_inches='tight', pad_inches=0.1)  # 输出地图,并设置边框空白紧密
    plt.show()
    
    图片
    E
    
    N
    
    D
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
  • 相关阅读:
    汇编-字符串
    k-form-design 改成自己组件步骤
    开放领域对话系统架构
    初识C语言 -- 数组
    MongoDB——centOS7环境Mongodb权限管理(图解版)
    在pycharm中导入sklearn库失败到成功
    08 数列极限疑难解析
    vue常见的keep-alive问题
    火车票识别易语言代码
    error LNK2001: 无法解析的外部符号 “public: __thiscall std::
  • 原文地址:https://blog.csdn.net/miaobo0/article/details/133779837